ZOU Lanlin, LI Nianqiong. Application of Improved Wavelet Threshold in Infrared Thermal Wave Nondestructive Testing[J]. Infrared Technology , 2021, 43(11): 1089-1096.
Citation: ZOU Lanlin, LI Nianqiong. Application of Improved Wavelet Threshold in Infrared Thermal Wave Nondestructive Testing[J]. Infrared Technology , 2021, 43(11): 1089-1096.

Application of Improved Wavelet Threshold in Infrared Thermal Wave Nondestructive Testing

More Information
  • Received Date: May 30, 2021
  • Revised Date: September 12, 2021
  • Infrared thermal wave non-destructive testing is a new type of technology that has developed rapidly in the past two decades and is widely used in many fields. However, owing to its vulnerability to influence from environmental factors and the particularity of its uneven working components, there is always a certain degree of noise pollution in the original thermal image of uncooled thermal imaging cameras; therefore, denoising the original thermal image is a key step in this technology. The traditional improved wavelet threshold denoising method is limited to the transformation of the adaptive decomposition scale of the threshold, such that the threshold function is smooth and continuous. There is no targeted method for noise variance estimation, which is the key variable of the threshold that determines the effect of wavelet threshold denoising. This study establishes a mixed noise model based on the noise characteristics of infrared images, estimates the noise variance, improves the threshold and threshold function based on the noise model, obtains the best function parameters through software, and finally analyzes the simulation results, process, and evaluation of real images. The results show that the improved wavelet threshold denoising method has a better denoising effect than the traditional threshold denoising method and partial filter denoising method.
  • [1]
    陈大鹏, 毛宏霞, 肖志河. 红外热成像无损检测技术现状及发展[J]. 计算机测量与控制, 2016, 24(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604001.htm

    CHEN Dapeng, MAO Hongxia, XIAO Zhihe. Infrared thermography NDT and its development[J]. Computer Measurement & Control, 2016, 24(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604001.htm
    [2]
    江海军, 陈力. 闪光灯热激励红外热波成像无损检测设备及应用[J]. 无损检测, 2017, 9(12): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201709015.htm

    JIANG Haijun, CHEN Li. Application of flash thermal excitation infrared thermographic nondestructive testing equipment[J]. Nondestructive Testing, 2016, 24(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201709015.htm
    [3]
    张小燕, 吐尔洪江·阿布都克力木. 小波变换的阈值图像去噪算法改进[J]. 计算机技术与发展, 2017(3): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201703017.htm

    ZHANG Xiaoyan, Turghunjan ABDUKIRIM TURKI. Improvement of threshold image denoising algorithm with wavelet transform[J]. Computer Technology and Development, 2017(3): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201703017.htm
    [4]
    唐麟, 刘琳, 苏君红. 红外图像噪声建模及仿真研究[J]. 红外技术, 2014, 36(7): 542-548. http://hwjs.nvir.cn/article/id/hwjs201407006

    TANG Lin, LIU Lin, SU Junhong. Modeling and simulation research of infrared image noise[J]. Infrared Technology, 2014, 36(7): 542-548. http://hwjs.nvir.cn/article/id/hwjs201407006
    [5]
    张盛伟, 向伟, 赵耀宏. 基于引导滤波的红外图像条纹噪声去除方法[J]. 计算机辅助设计与图形学学报, 2017, 29(8): 1434-1443. DOI: 10.3969/j.issn.1003-9775.2017.08.006

    ZHANG Shengwei, XIANG Wei, ZHAO Yaohong. Stripe noise removal method for infrared images based on guided filtering[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(8): 1434-1443. DOI: 10.3969/j.issn.1003-9775.2017.08.006
    [6]
    杨鑫蕊. 改进的小波阈值去噪算法研究[D]. 哈尔滨: 哈尔滨理工大学, 2014.

    YANG Xinrui. The study on improved wavelet threshold denoising method[D]. Harbin: Harbin University of Science and Technology, 2014.
    [7]
    王风. 小波变换在图像去噪及增强中的应用研究[D]. 淮南: 安徽理工大学, 2020.

    WANG Feng. Application of wavelet transform in image denoising and enhancement[D]. Huainan: Anhui University of science and Technology, 2020.
    [8]
    李方舟, 赵耀宏, 向伟, 等. 基于改进非局部均值的红外图像混合噪声去除方法[J]. 红外与激光工程, 2019(1): 169-179. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2019S1025.htm

    LI Fangzhou, ZHAO Yaohong, XIANG Wei, et al. Infrared image mixed noise removal method based on improved NL-means[J]. Infrared and Laser Engineering, 2019(1): 169-179. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2019S1025.htm
    [9]
    姚雪晴. 基于小波域分频的变电站红外监控图像噪声自适应滤波算法[J]. 电工技术, 2017(5): 26-27, 172. DOI: 10.3969/j.issn.1002-1388.2017.05.009

    YAO Xueqing. Adaptive filtering algorithm for substation infrared monitoring image noise based on frequency division in wavelet domain[J]. Electric Engineering, 2017(5): 26-27, 172. DOI: 10.3969/j.issn.1002-1388.2017.05.009
    [10]
    钱伟. 红外与可见光图像融合方法与评价指标研究[D]. 银川: 北方民族大学, 2018.

    QIAN Wei. Infrared and visible image fusion methods and evaluation indexes research[D]. Yinchuan: North Minzu University, 2018.
    [11]
    乔玉雷. 基于Morlet小波分频的保边滤波去噪方法[J]. 石油物探, 2011, 50(2): 139-143, 154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201102008.htm

    QIAO Yulei. Boundary-preserving filtering denoising method based on frequency division of Morlet wavelet[J]. Geophysical Prospecting for Petroleum, 2011, 50(2): 139-143, 154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201102008.htm
  • Related Articles

    [1]LI Jinping, CAI Youlin, LIU Qitao. Simulation of Infrared Images at Different Heights and Atmospheric Modes[J]. Infrared Technology , 2024, 46(10): 1218-1223.
    [2]NIU Yi, MA Yun, LI Mingming, ZHANG Ying. Modeling and Numerical Analysis of Infrared Nondestructive Testing of Non-metallic Materials[J]. Infrared Technology , 2019, 41(3): 214-219.
    [3]CHEN Kai, SUN De-xin, LIU Yin-nian. 3D Noise Model of LWIR System and Analysis[J]. Infrared Technology , 2015, (8): 676-679.
    [4]TANG Lin, LIU Lin, SU Junhong. Modeling and Simulation Research of Infrared Image Noise[J]. Infrared Technology , 2014, (7): 542-548.
    [5]LI Long, SUN Hao, ZHU Xian. Simulation Analysis of Dark Current in Long Wavelength Infrared HgCdTe Photodiodes[J]. Infrared Technology , 2014, (1): 73-78.
    [6]ZHANG Ning, WU He-ran, ZHOU Yun, JIANG Ning, JIANG Ya-dong. Using the Three-dimension Noise Model to Test and Analyze the ROIC of UIRFPA[J]. Infrared Technology , 2012, 34(6): 336-339. DOI: 10.3969/j.issn.1001-8891.2012.06.006
    [7]ZOU Qian-jin, DAI Rui, LIU Xin. The Noise Measurement Simulation of Infrared Imaging System[J]. Infrared Technology , 2008, 30(6): 346-350. DOI: 10.3969/j.issn.1001-8891.2008.06.010
    [8]LI Yan-zhi, SUN Bo, WANG Da-hui. Building Model of Aeroplane Infrared Radiant and Simulation[J]. Infrared Technology , 2008, 30(5): 252-255. DOI: 10.3969/j.issn.1001-8891.2008.05.002
    [9]JIANG Yi-ming, WANG Ke-yong, ZHENG Lian, SONG Cheng-tian. Infrared Imaging Modelling and Simulation of A Tank Target[J]. Infrared Technology , 2008, 30(1): 39-42. DOI: 10.3969/j.issn.1001-8891.2008.01.010
    [10]Noise Simulation of Infrared Multi-element Seeker[J]. Infrared Technology , 2003, 25(6): 59-60,63. DOI: 10.3969/j.issn.1001-8891.2003.06.016
  • Cited by

    Periodical cited type(1)

    1. 杨玉萍,宋建华,刘剑,周晓瑜,刘艳芳,戈帆,赵远荣,王冲文,罗瑞,刘云红. 硅基底增透膜典型自然环境适应性评价研究. 装备环境工程. 2022(12): 127-136 .

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (31) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return