ZOU Lanlin, LI Nianqiong. Application of Improved Wavelet Threshold in Infrared Thermal Wave Nondestructive Testing[J]. Infrared Technology , 2021, 43(11): 1089-1096.
Citation: ZOU Lanlin, LI Nianqiong. Application of Improved Wavelet Threshold in Infrared Thermal Wave Nondestructive Testing[J]. Infrared Technology , 2021, 43(11): 1089-1096.

Application of Improved Wavelet Threshold in Infrared Thermal Wave Nondestructive Testing

More Information
  • Received Date: May 30, 2021
  • Revised Date: September 12, 2021
  • Infrared thermal wave non-destructive testing is a new type of technology that has developed rapidly in the past two decades and is widely used in many fields. However, owing to its vulnerability to influence from environmental factors and the particularity of its uneven working components, there is always a certain degree of noise pollution in the original thermal image of uncooled thermal imaging cameras; therefore, denoising the original thermal image is a key step in this technology. The traditional improved wavelet threshold denoising method is limited to the transformation of the adaptive decomposition scale of the threshold, such that the threshold function is smooth and continuous. There is no targeted method for noise variance estimation, which is the key variable of the threshold that determines the effect of wavelet threshold denoising. This study establishes a mixed noise model based on the noise characteristics of infrared images, estimates the noise variance, improves the threshold and threshold function based on the noise model, obtains the best function parameters through software, and finally analyzes the simulation results, process, and evaluation of real images. The results show that the improved wavelet threshold denoising method has a better denoising effect than the traditional threshold denoising method and partial filter denoising method.
  • [1]
    陈大鹏, 毛宏霞, 肖志河. 红外热成像无损检测技术现状及发展[J]. 计算机测量与控制, 2016, 24(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604001.htm

    CHEN Dapeng, MAO Hongxia, XIAO Zhihe. Infrared thermography NDT and its development[J]. Computer Measurement & Control, 2016, 24(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604001.htm
    [2]
    江海军, 陈力. 闪光灯热激励红外热波成像无损检测设备及应用[J]. 无损检测, 2017, 9(12): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201709015.htm

    JIANG Haijun, CHEN Li. Application of flash thermal excitation infrared thermographic nondestructive testing equipment[J]. Nondestructive Testing, 2016, 24(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201709015.htm
    [3]
    张小燕, 吐尔洪江·阿布都克力木. 小波变换的阈值图像去噪算法改进[J]. 计算机技术与发展, 2017(3): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201703017.htm

    ZHANG Xiaoyan, Turghunjan ABDUKIRIM TURKI. Improvement of threshold image denoising algorithm with wavelet transform[J]. Computer Technology and Development, 2017(3): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201703017.htm
    [4]
    唐麟, 刘琳, 苏君红. 红外图像噪声建模及仿真研究[J]. 红外技术, 2014, 36(7): 542-548. http://hwjs.nvir.cn/article/id/hwjs201407006

    TANG Lin, LIU Lin, SU Junhong. Modeling and simulation research of infrared image noise[J]. Infrared Technology, 2014, 36(7): 542-548. http://hwjs.nvir.cn/article/id/hwjs201407006
    [5]
    张盛伟, 向伟, 赵耀宏. 基于引导滤波的红外图像条纹噪声去除方法[J]. 计算机辅助设计与图形学学报, 2017, 29(8): 1434-1443. DOI: 10.3969/j.issn.1003-9775.2017.08.006

    ZHANG Shengwei, XIANG Wei, ZHAO Yaohong. Stripe noise removal method for infrared images based on guided filtering[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(8): 1434-1443. DOI: 10.3969/j.issn.1003-9775.2017.08.006
    [6]
    杨鑫蕊. 改进的小波阈值去噪算法研究[D]. 哈尔滨: 哈尔滨理工大学, 2014.

    YANG Xinrui. The study on improved wavelet threshold denoising method[D]. Harbin: Harbin University of Science and Technology, 2014.
    [7]
    王风. 小波变换在图像去噪及增强中的应用研究[D]. 淮南: 安徽理工大学, 2020.

    WANG Feng. Application of wavelet transform in image denoising and enhancement[D]. Huainan: Anhui University of science and Technology, 2020.
    [8]
    李方舟, 赵耀宏, 向伟, 等. 基于改进非局部均值的红外图像混合噪声去除方法[J]. 红外与激光工程, 2019(1): 169-179. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2019S1025.htm

    LI Fangzhou, ZHAO Yaohong, XIANG Wei, et al. Infrared image mixed noise removal method based on improved NL-means[J]. Infrared and Laser Engineering, 2019(1): 169-179. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2019S1025.htm
    [9]
    姚雪晴. 基于小波域分频的变电站红外监控图像噪声自适应滤波算法[J]. 电工技术, 2017(5): 26-27, 172. DOI: 10.3969/j.issn.1002-1388.2017.05.009

    YAO Xueqing. Adaptive filtering algorithm for substation infrared monitoring image noise based on frequency division in wavelet domain[J]. Electric Engineering, 2017(5): 26-27, 172. DOI: 10.3969/j.issn.1002-1388.2017.05.009
    [10]
    钱伟. 红外与可见光图像融合方法与评价指标研究[D]. 银川: 北方民族大学, 2018.

    QIAN Wei. Infrared and visible image fusion methods and evaluation indexes research[D]. Yinchuan: North Minzu University, 2018.
    [11]
    乔玉雷. 基于Morlet小波分频的保边滤波去噪方法[J]. 石油物探, 2011, 50(2): 139-143, 154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201102008.htm

    QIAO Yulei. Boundary-preserving filtering denoising method based on frequency division of Morlet wavelet[J]. Geophysical Prospecting for Petroleum, 2011, 50(2): 139-143, 154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201102008.htm
  • Related Articles

    [1]LI Jinping, CAI Youlin, LIU Qitao. Simulation of Infrared Images at Different Heights and Atmospheric Modes[J]. Infrared Technology , 2024, 46(10): 1218-1223.
    [2]NIU Yi, MA Yun, LI Mingming, ZHANG Ying. Modeling and Numerical Analysis of Infrared Nondestructive Testing of Non-metallic Materials[J]. Infrared Technology , 2019, 41(3): 214-219.
    [3]CHEN Kai, SUN De-xin, LIU Yin-nian. 3D Noise Model of LWIR System and Analysis[J]. Infrared Technology , 2015, (8): 676-679.
    [4]TANG Lin, LIU Lin, SU Junhong. Modeling and Simulation Research of Infrared Image Noise[J]. Infrared Technology , 2014, (7): 542-548.
    [5]LI Long, SUN Hao, ZHU Xian. Simulation Analysis of Dark Current in Long Wavelength Infrared HgCdTe Photodiodes[J]. Infrared Technology , 2014, (1): 73-78.
    [6]ZHANG Ning, WU He-ran, ZHOU Yun, JIANG Ning, JIANG Ya-dong. Using the Three-dimension Noise Model to Test and Analyze the ROIC of UIRFPA[J]. Infrared Technology , 2012, 34(6): 336-339. DOI: 10.3969/j.issn.1001-8891.2012.06.006
    [7]ZOU Qian-jin, DAI Rui, LIU Xin. The Noise Measurement Simulation of Infrared Imaging System[J]. Infrared Technology , 2008, 30(6): 346-350. DOI: 10.3969/j.issn.1001-8891.2008.06.010
    [8]LI Yan-zhi, SUN Bo, WANG Da-hui. Building Model of Aeroplane Infrared Radiant and Simulation[J]. Infrared Technology , 2008, 30(5): 252-255. DOI: 10.3969/j.issn.1001-8891.2008.05.002
    [9]JIANG Yi-ming, WANG Ke-yong, ZHENG Lian, SONG Cheng-tian. Infrared Imaging Modelling and Simulation of A Tank Target[J]. Infrared Technology , 2008, 30(1): 39-42. DOI: 10.3969/j.issn.1001-8891.2008.01.010
    [10]Noise Simulation of Infrared Multi-element Seeker[J]. Infrared Technology , 2003, 25(6): 59-60,63. DOI: 10.3969/j.issn.1001-8891.2003.06.016
  • Cited by

    Periodical cited type(11)

    1. 李卓. 基于线结构光成像技术的定制产品包装视觉图像处理方法. 激光杂志. 2024(02): 208-213 .
    2. 徐立,刘亮,赵凤军. 灰度变换下多模态刚性医学图像分层增强仿真. 计算机仿真. 2024(04): 250-254 .
    3. 唐菀,刘鑫. 视觉注意模型的低照度图像感兴趣区域检测. 计算机仿真. 2024(05): 242-245+337 .
    4. 阚绪康,史格非,杨雪榕. 基于动态特征点滤除与关键帧选择优化的ORB-SLAM2算法. 计算机应用. 2024(10): 3185-3190 .
    5. 卢佳佳,蔡坚勇. 基于增强视觉质量的图像感兴趣区域检测研究. 计算机仿真. 2023(01): 234-238 .
    6. 孙宇辰,石逸夫,王查理,石可民. 一种视觉定位算法在社区低速车上的应用. 科技与创新. 2023(08): 168-170 .
    7. 来金强. 基于目标检测和动静点分离的视觉即时定位与地图构建技术. 机械制造. 2023(11): 80-84 .
    8. 刘文杰,刘小娇,付猛,姚玉波. 基于视觉SLAM的动态图像处理方法研究. 数字通信世界. 2022(06): 14-16 .
    9. 贾雨萌,刘甜甜,李振华. 一种改进的SLAM建图方法研究. 物联网技术. 2022(08): 71-73 .
    10. 张凤,王伟良,袁帅,孙明智. 动态环境下基于卷积神经网络的视觉SLAM方法. 沈阳工业大学学报. 2022(06): 688-693 .
    11. 王德欣. SLAM技术及其在测绘领域中的应用研究. 西部资源. 2022(05): 106-108 .

    Other cited types(2)

Catalog

    Article views (161) PDF downloads (31) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return