Citation: | WANG Jialong, LIU Yanzhen, YANG Xiaokun, HUANG Fuyun, YANG Chaowei, LI Xiongjun. Surface Treatment Method of Near-Stoichiometric Ratio HgCdTe Film[J]. Infrared Technology , 2024, 46(6): 646-653. |
Surface components of HgCdTe (MCT) films were examined using x-ray photoelectron spectroscopy after etching with different solutions, including Br2:methanol (Br2:Me), Br2:HBr, and Br2:HBr:ethanediol (Br2:HBr:Eg). The surface degradation after etching by bromide-based solutions arises from the Te-rich element on the surface of HgCdTe, and the enrichment degree of Te is (Br2:HBr:Eg) < (Br2:HBr) < (Br2:Me). The wet-etch method is difficult to apply in eliminating Te-rich components to achieve a near-stoichiometric surface. In the commonly used method, oxidation is followed by corrosion. Plasma oxidation offers advantages, such as strong oxidation, stability, safety, and environmental protection. Therefore, oxygen plasma treatment has been introduced for various etchants to eliminate oxides, including hydrochloric acid, lactic acid, and ammonia. The results indicate that the use of low-concentration hydrochloric acid immersion generates a better effect without introducing any new dopants, and the defect density of the CdTe/HgCdTe interface decreases significantly after treatment.
[1] |
Rogalski A. Next decade in infrared detectors[C]// Electro-Optical and Infrared Systems: Technology and Applications XIV, Proc. of SPIE, 2017, 10433: 104330L.
|
[2] |
Rogalski A. Infrared and Terahertz Detectors[M]. Third Edition: Boca Raton: CRC Press, 2019
|
[3] |
Ragini Raj Singh, Diksha Kaushik, Dhirendra Gupta. Investigation of passivation processes for HgCdTe/CdS structure for infrared application[J]. Thin Solid Films, 2006, 510: 235-240. DOI: 10.1016/j.tsf.2005.12.201
|
[4] |
Stoltz A J, Benson J D, Jaime-Vasquez M, et al. A review of the characterization techniques for the analysis of etch processed surfaces of HgCdTe and related compounds[J]. J. Electron. Mater., 2014, 43: 3708-3717. DOI: 10.1007/s11664-014-3281-4
|
[5] |
Nokhwal R, Pandey A, Sharma B L, et al. Chemo-mechanical polishing of HgCdTe epilayers grown using LPE technique[J]. The Physics of Semiconductor Devices, 2019, 215: 1021-1026.
|
[6] |
Stahle C M, Helms C R. Ion sputter effects on HgTe, CdTe, and HgCdTe[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992(10): 3239-3245.
|
[7] |
Bhan R K, Sahai S R, Saini N K, et al. The low frequency behaviour in high frequency capacitance-voltage characteristics due to contribution of band-to-band tunnelling and generation-recombination in HgCdTe MIS capacitors [J]. Infrared Physics & Technology, 2011, 54(5): 379-381.
|
[8] |
Varesi J B, Benson J D, Jaime-Vasquez M, et al. Investigation of HgCdTe surface films and their removal[J]. Journal of Electronic Materials, 2006, 35(6): 1442-1448.
|
[9] |
Causier A, Gerard I, Bouttemy M, et al. Wet etching of HgCdTe in aqueous bromine solutions: a quantitative chemical approach[J]. Journal of Electronic Materials, 2011, 40(8): 1823-1829. DOI: 10.1007/s11664-011-1660-7
|
[10] |
Srivastav V, Pal R, Sharma B L, et al. Etching of mesa structures in HgCdTe[J]. Journal of Electronic Materials, 2005, 34(11): 1440-1445. DOI: 10.1007/s11664-005-0203-5
|
[11] |
XIE Xiaohui, LIAO Qingjun, ZHU Jianmei, et al. Surface treatment effects on the I-V characteristics of HgCdTe LW Infrared photovoltaic detectors[C]//6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy of SPIE, 2012, 8419: 84191G.
|
[12] |
Kowalczyk S P, Cheung J T. XPS investigation of the oxidation of Hg1-xCdxTe surfaces[J]. J. vac. Sci. Technol. , 1981, 18(3): 944-948. DOI: 10.1116/1.570961
|
[13] |
Lee Seong Hoon, Shin Hyungcheol, et al. New surface treatment method for improving the interface characteristics of CdTe/Hg1-xCdxTe hetero-structure [J]. Journal of Electronic Materials, 1997, 26(6): 556-560. DOI: 10.1007/s11664-997-0193-6
|
[14] |
Zakirov E R, Kesler V G, Sidorov G Y, et al. Wet Chemical Methods of HgCdTe surface treatment[J]. Journal of Structural Chemistry, 2023, 64(3): 519-527. DOI: 10.1134/S0022476623030150
|
[15] |
Lee Min Yung, Lee Yong Soo, Lee Hee Chul. Behavior of elemental tellurium as surface generation-recombination centers in CdTe/HgCdTe interface[J]. Applied Physics Letters, 2006, 88: 204101. DOI: 10.1063/1.2203940
|
[16] |
Radheshyam Nokhwal, Vanya Srivastav, Anshu Goyal, et al. Surface studies on HgCdTe using non-aqueous iodine-based polishing solution [J]. Journal of Electronic Materials, 2017, 46(12): 6795-6803. DOI: 10.1007/s11664-017-5764-6
|
[17] |
Jung Yong-Chul, An Se-Young, Suh Sang-hee, et al. Ammonium sulfide treatment of HgCdTe substrate and its effects on electrical properties of ZnS/HgCdTe heterostructure[J]. Thin Solid Films, 2005, 483: 407-410. DOI: 10.1016/j.tsf.2004.12.057
|
[18] |
Ajay Kumar Saini, Vanya Srivastav, Sudha Gupta, et al. Improvement of electrical properties of ZnS/CdTe-HgCdTe interface by (NH4)2S treatment[J]. Infrared Physics and Technology, 2019, 102: 102988. DOI: 10.1016/j.infrared.2019.102988
|
[19] |
Shubhrangshu Mallick, Rajni Kiran, Siddhartha Ghosh, et al. Comparative study of HgCdTe etchants: an electrical characterization [J]. Journal of Electronic Materials, 2007, 36(8): 993-999. DOI: 10.1007/s11664-007-0159-8
|
[20] |
Sporken R, Kiran R, Casselman T, et al. The effect of wet etching on surface properties of HgCdTe [J]. Journal of Electronic Materials, 2009, 38(8): 1781-1789. DOI: 10.1007/s11664-009-0844-x
|
[21] |
Kopytko M, Rogalski A. Figure of merit for infrared detector materials[J]. Infrared Physics and Technology, 2022, 124: 104216. DOI: 10.1016/j.infrared.2022.104216
|
[22] |
Lee Seong Hoon, Bae Soo Ho, et al. Surface treatment effects on the electrical properties of the interfaces between ZnS and LPE-Grown Hg0.7Cd0.3Te[J]. Journal of Electronic Materials, 1998, 27(6): 684-688. DOI: 10.1007/s11664-998-0036-0
|
[23] |
Pal R, Amit Malik, V Srivastav, et al. Engineering interface composition for passivation of HgCdTe photodiodes[J]. IEEE Transactions on Electron Devices, 2006, 53(11): 2727-2734. DOI: 10.1109/TED.2006.883817
|
[1] | LI Wen, YE Kuntao, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Algorithm Based on Gaussian Fuzzy Logic and Adaptive Dual-Channel Spiking Cortical Model[J]. Infrared Technology , 2022, 44(7): 693-701. |
[2] | YANG Sunyun, XI Zhenghao, WANG Handong, LUO Xiao, KAN Xiu. Image Fusion Based on NSCT and Minimum-Local Mean Gradient[J]. Infrared Technology , 2021, 43(1): 13-20. |
[3] | QIAN Wei, CHANG Xia, HU Ling. Infrared and Visible Image Pseudo Color Fusion Algorithm Based on Improved Color Transfer Strategy and NSCT[J]. Infrared Technology , 2019, 41(6): 555-560. |
[4] | ZHAO Jingchao, LIN Suzhen, LI Dawei, WANG Lifang, YANG Xiaoli. A Comparative Study of Intuitionistic Fuzzy Sets in Multi-band Image Fusion[J]. Infrared Technology , 2018, 40(9): 881-886. |
[5] | YANG Guang, ZHANG Xiaohan, ZHANG Jianfeng, HUANG Junhua. A Fusion Method for Hyperspectral Imagery Based on Area Feature Detection Using NSCT[J]. Infrared Technology , 2017, 39(6): 505-511. |
[6] | YANG Fengbao, DONG Anran, ZHANG Lei, JI Linna. Infrared Polarization Image Fusion Using the Synergistic Combination of DWT, NSCT and Improved PCA[J]. Infrared Technology , 2017, 39(3): 201-208. |
[7] | YUAN Jin-lou, WU Jin, LIU Jin. Image Fusion Based on Compressed Sensing of NSCT and DWT[J]. Infrared Technology , 2015, 37(11): 957-961. |
[8] | AN Fu, YANG Feng-bao, NIU Tao. A Fusion Model of Infrared Polarization Images Based on Fuzzy Logic and Feature Difference Driving[J]. Infrared Technology , 2014, (4): 304-310. |
[10] | Study on Algorithm of Infrared Image Enhancement Based on Fuzzy Theory[J]. Infrared Technology , 2003, 25(2): 13-14. DOI: 10.3969/j.issn.1001-8891.2003.02.004 |
1. |
肖文健,王彦斌,蒋成龙,周旋风,张德锋. 复杂场景下红外探测系统性能分析与建模. 红外技术. 2025(01): 29-35+43 .
![]() |