XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology , 2024, 46(9): 1025-1034.
Citation: XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology , 2024, 46(9): 1025-1034.

Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation

More Information
  • Received Date: March 14, 2023
  • Revised Date: April 27, 2023
  • Hyperspectral images (HSIs) are polluted by a large amount of mixed noise during the acquisition process, which affects the performance of subsequent applications of remote sensing images. Therefore, restoring clean HSI from the mixed noise is an important preprocessing step. In this study, a hyperspectral mixed noise image restoration model based on nonconvex low-rank tensor decomposition and group-sparse total variational regularization is proposed. On the one hand, by using logarithmic tensor nuclear norm to approximate the low-rank characteristics of the HSI, the inherent tensor structure of hyperspectral data can be utilized, and the shrinkage of larger singular values can be reduced to preserve more detailed features of the image. On the other hand, the group sparse total variational regularization can be used to enhance the spatial sparsity of the HSI and correlation between adjacent spectra. ADMM algorithm is used to solve the problem, and an experiment shows that the algorithm converges easily. In simulated and real hyperspectral image experiments, this method performs better in removing HSI mixed noise when compared to other methods.

  • [1]
    Bioucas Dias J M, Plaza A, Camps Valls G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Trans. Geosci. Remote Sens. , 2013, 1: 6-36.
    [2]
    LI Hengchao, WANG Weiye, PAN Lei, et al. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 738-751. DOI: 10.1109/JSTARS.2020.2968930
    [3]
    DIAN R, LI S, FANG L. Learning a low tensor-train rank representation for hyperspectral image super-resolution[J]. IEEE Trans. Neural Netw. Learn. , Syst. , 2019, 30(9): 2672-2683. DOI: 10.1109/TNNLS.2018.2885616
    [4]
    Bioucas Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379. DOI: 10.1109/JSTARS.2012.2194696
    [5]
    ZHANG Pengdan, NING Jifeng. Hyperspectral image denoising via group sparsity regularized hybrid spatio-spectral total variation[J]. Remote. Sens., 2022, 14: 2348. DOI: 10.3390/rs14102348
    [6]
    Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Trans. Image Process., 2006, 15(12): 3736-3745. DOI: 10.1109/TIP.2006.881969
    [7]
    Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65-74. DOI: 10.1109/36.3001
    [8]
    Candès E J, LI X, MA Y, et al. Robust principal component analysis?[J]. J. ACM, 2011, 58: 1-37.
    [9]
    GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 2862–2869.
    [10]
    HE W, ZHANG H, ZHANG L, et al. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation[J]. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens, . 2015, 8: 3050-3061.
    [11]
    Karami A, Yazdi M, Asli A Z. Noise reduction of hyperspectral images using kernel non-negative tucker decomposition[J]. IEEE J. Sel. Topics Signal Process. , 2011, 5(3): 487-493. DOI: 10.1109/JSTSP.2011.2132692
    [12]
    FAN H, CHEN Y, GUO Y, et al. Hyperspectral image restoration using low-rank tensor recovery[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , 2017, 10(10): 4589-4604. DOI: 10.1109/JSTARS.2017.2714338
    [13]
    HE W, ZHANG H, ZHANG L, et al. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Trans. Geosci. Remote Sens. , 2016, 54(1): 178-188. DOI: 10.1109/TGRS.2015.2452812
    [14]
    WANG Y, PENG J, ZHAO Q, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2018, 11(4): 1227-1243. DOI: 10.1109/JSTARS.2017.2779539
    [15]
    FAN H, LI C, GUO Y, et al. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising[J]. IEEE Trans. Geosci. Remote Sens. , 2018, 56(10): 6196-6213. DOI: 10.1109/TGRS.2018.2833473
    [16]
    CHEN Y, HE W, Yokoya N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3556-3570. DOI: 10.1109/TCYB.2019.2936042
    [17]
    SHI Q, TANG X, YANG T, et al. Hyperspectral image denoising using a 3-D attention denoising network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10348-10363. DOI: 10.1109/TGRS.2020.3045273
    [18]
    WANG Z, SHAO Z, HUANG X, et al. SSCAN: a spatial–spectral cross attention network for hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [19]
    ZHENG Y B, HUANG T Z, ZHAO X L, et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 734-749. DOI: 10.1109/TGRS.2019.2940534
    [20]
    Fazel M, Hindi H, Boyd S P. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices[C]//Proc. IEEE Amer. Control Conf., 2003, 3: 2156-2162.
    [21]
    Mohan K, Fazel M. Iterative reweighted algorithms for matrix rank minimization[J]. J. Mach. Learn. Res., 2012, 13(1): 3441-3473.
    [22]
    DENG Y, DAI Q, LIU R, et al. Low-rank structure learning via nonconvex heuristic recovery[J]. IEEE Trans. Neural Netw. Learn. Syst., 2013, 24(3): 383-396. DOI: 10.1109/TNNLS.2012.2235082
    [23]
    DONG W, SHI G, HU X, et al. Nonlocal sparse and low-rank regularization for optical flow estimation[J]. IEEE Trans. Image Process. , 2014, 23(10): 4527-4538. DOI: 10.1109/TIP.2014.2352497
    [24]
    JI T Y, HUANG T Z, ZHAO X L, et al. A non-convex tensor rank approximation for tensor completion[J]. Applied Mathematical Modelling, 2017, 48: 410-422. DOI: 10.1016/j.apm.2017.04.002
    [25]
    Boyd S, Parikh N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Found. Trends Mach. Learn., 2011, 3(1): 1-122.
    [26]
    ZHANG Z, LIU D, Aeron S, et al. An online tensor robust PCA algorithm for sequential 2D data[C]//Proc. Int. Conf. Acoust., Speech, Signal Process., 2016: 2434-2438.
    [27]
    LU C, FENG J, CHEN Y, et al. Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 5249-5257.
    [28]
    GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014: 2862-2869.
    [29]
    Aggarwal H K, Majumdar A. Hyperspectral image denoising using spatio-spectral total variation[J]. IEEE Geosci. Remote Sens. Lett. , 2016 13(3): 442-446.
    [30]
    HE W, ZHANG H, SHEN H, et al. Hyperspectral image denoising using local low-rank matrix recovery and global spatial–spectral total variation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 713-729. DOI: 10.1109/JSTARS.2018.2800701
    [31]
    XIE Q, ZHAO Q, MENG D, et al., Multispectral images denoising by intrinsic tensor sparsity regularization[C]//Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016: 1692-1700.
    [32]
    LIU Y Y, ZHAO X L, ZHENG Y B, et al. Hyperspectral image restoration by tensor fibered rank constrained optimization and plug-and-play regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.
    [33]
    Eckstein J, YAO W. Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives[J]. Pacific Journal of Optimization, 2015, 11(4): 619-644.
    [34]
    LUO Y S, ZHAO X L, JIANG T X, et al. Hyperspectral mixed noise removal via spatial-spectral constrained unsupervised deep image prior[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9435-9449. DOI: 10.1109/JSTARS.2021.3111404
    [35]
    LAI Z, WEI K, FU Y. Deep plug-and-play prior for hyperspectral image restoration[J]. Neurocomputing, 2022, 481: 281-293. DOI: 10.1016/j.neucom.2022.01.057
  • Related Articles

    [1]LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801.
    [2]WANG Chenyue, LEI Xufeng, LI Zemin, YANG Shaoming, HE Yan. Fast Restoration Algorithm for Space-variant Defocus Blurred Infrared Images[J]. Infrared Technology , 2021, 43(4): 378-384.
    [3]WANG Li, WANG Wei, LIU Boni. Sparse Decomposition of Hyperspectral Images Based on Spectral Correlation[J]. Infrared Technology , 2020, 42(10): 969-977.
    [4]Research on Adaptive Optics Image Restoration Algorithm Based on Adaptive Total Variational Method[J]. Infrared Technology , 2019, 41(12): 1106-1110.
    [5]ZHANG Tengfei, WANG Hongbo, HUANG Xiaoxian, WEI Jun, MA Liang. Research on Using Frame Transfer CCD Smear Correction Channel to Restore Saturated Image Channels[J]. Infrared Technology , 2016, 38(1): 41-46.
    [6]LI Zun, WU Jin, LIU Jin. Criminisi Image Restoration Algorithm for Object Removal[J]. Infrared Technology , 2016, 38(1): 28-32.
    [7]CUI Yi, WEI Jun, HUANG Xiao-xian. Image Restoration of Imaging Spectrometer Based on Line Spread Function Matrix[J]. Infrared Technology , 2014, (2): 115-119.
    [8]WU Yan, AN Bo-wen, YE Hong-tao, Zhao Ming, LIN Chuan. Infrared Imaging Experiment Research of Image Restoration Basic Application Conditions[J]. Infrared Technology , 2012, 34(5): 280-285. DOI: 10.3969/j.issn.1001-8891.2012.05.008
    [9]The Restoration Algorithm Research for Blurred Image with Mist[J]. Infrared Technology , 2004, 26(6): 76-78. DOI: 10.3969/j.issn.1001-8891.2004.06.020
    [10]An Image Restoration Algorithm for Gene Chip Scanner[J]. Infrared Technology , 2002, 24(6): 41-43. DOI: 10.3969/j.issn.1001-8891.2002.06.009
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (63) PDF downloads (22) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return