WANG Liguang, SHUI Junjie, XU Luhui, ZHAO Jiong, YU Changqing, FAN Yiming. Digital Twin Guidance Law for Missile to Hit Weak Ground Infrared Target[J]. Infrared Technology , 2023, 45(7): 768-774.
Citation: WANG Liguang, SHUI Junjie, XU Luhui, ZHAO Jiong, YU Changqing, FAN Yiming. Digital Twin Guidance Law for Missile to Hit Weak Ground Infrared Target[J]. Infrared Technology , 2023, 45(7): 768-774.

Digital Twin Guidance Law for Missile to Hit Weak Ground Infrared Target

More Information
  • Received Date: September 10, 2022
  • Revised Date: November 22, 2022
  • When an infrared-guided missile attacks a ground target, natural or human factors can cause the infrared characteristics of the target to weaken or even disappear. The seeker cannot or intermittently detects the target, which significantly affects the guidance accuracy. To solve this problem, a digital twin guidance law is proposed for hitting a weak infrared target on the ground. On the basis of an infrared seeker in the physical world, digital twin models of the target and guidance laws are developed in the digital world. The state parameters of the missile motion and control in the guidance process at each point in time are obtained by simulation, and saved as the digital twin of the guidance process. During guidance process, when the seeker cannot obtain the measurement signal, its digital twin is activated immediately to take over and provide the control system with the acceleration order. Simulations show that the digital twin of the seeker can provide the missile control system with the maneuver order to accurately guide the missile when the infrared seeker is unable to capture the signal. The digital twin guidance law is robust against infrared camouflage, interference, and bad weather, and has broad application prospects.
  • [1]
    刘杰, 王博, 万纯, 等. 红外导引头工作原理及抗干扰措施分析[J]. 航天电子对抗, 2022, 38(2): 34-37, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ202202007.htm

    LIU Jie, WANG Bo, WAN Chun. Working principle and anti-jamming measures analysis of infrared guidance[J]. Aerospace Electronic Warfare, 2022, 38(2): 34-37, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ202202007.htm
    [2]
    WANG Xinchun, MO Bo, LI Xuan, et al. A line-of-sight rate estimation method for roll-pitch gimballed infrared seeker[J]. Optik, 2019, 192: 162935-162935. DOI: 10.1016/j.ijleo.2019.162935
    [3]
    王本革, 杨明, 凌新锋, 等. 全天空红外云探测在航空气象中的应用[J]. 大气与环境光学学报, 2021, 16(5): 404-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY202105004.htm

    WANG Benge, YANG Ming, LING Xinfeng, et al. Application of all-sky infrared cloud observation inaviation meteorology[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 404-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY202105004.htm
    [4]
    李延伟, 高清京, 魏浩东, 等. 高帧频宽温度范围红外点源干扰装置设计[J]. 红外与激光工程, 2021, 50(11): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202111010.htm

    LI Yanwei, GAO Qingjing, WEI Haodong, et al. Design of infrared point source interference device with high frame frequency and wide temperature range[J]. Infrared and Laser Engineering, 2021, 50(11): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202111010.htm
    [5]
    LI Kai, WANG Xuanyu, GAO Yanqing, et al. Preparation of nickel-coated graphene and evaluation of infrared interference performance[J]. Journal of Physics: Conference Series, 2022, 2194(1): 012043. DOI: 10.1088/1742-6596/2194/1/012043
    [6]
    赵晓枫, 吴飞, 徐叶斌, 等. 基于背景还原的红外伪装效果评价方法[J]. 系统工程与电子技术, 2022, 44(8): 2554-2561. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202208020.htm

    ZHAO X F, WU F, XU Y B, et al. Evaluation method of infrared camouflage effect based on background restoration[J]. Systems Engineering and Electronics, 2022, 44(8): 2554-2561. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202208020.htm
    [7]
    LU Mingfeng, LIU Bangcheng, WU Jianping, et al. The indoor automatic guided vehicle with an ir positioning and low-cost inertial navigation system[J]. Applied Mechanics and Materials, 2013, 2307: 300-301.
    [8]
    卢瑞涛, 申通, 杨小冈, 等. 高动态条件下增量惯导信息辅助的空地红外弱小移动目标检测算法[J]. 红外与激光工程, 2022, 51(4): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204004.htm

    LU Ruitao, SHEN Tong, YANG Xiaogang. Infrared dim moving target detection algorithm assisted by incremental inertial navigation information in high dynamic air to ground background[J]. Infrared and Laser Engineering, 2022, 51(4): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204004.htm
    [9]
    陈文钰, 邵雷, 谭诗利, 等. 基于虚拟拦截点的预测制导算法设计[J]. 飞行力学, 2020, 38(3): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202003013.htm

    CHEN Wenyu, SHAO Lei, TAN Shili, et al. Design of predictive guidance algorithm based on virtual intercepting points[J]. Flight Dynamics, 2020, 38(3): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202003013.htm
    [10]
    SHI Heng, ZHU Jihong, KUANG Minchi, et al. Cooperative prediction guidance law in target-attacker-defender scenario[J]. Science China Information Sciences, 2020, 64(4): 220-222
    [11]
    杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统: 发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202007004.htm

    YANG Linyao, CHEN Siyuan, WANG Xiao, et al. Digital twins and parallel systems: state of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001−2031. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202007004.htm
    [12]
    刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201811002.htm

    LIU Datong, GUO Kai, WANG Benkuan, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201811002.htm
    [13]
    BotínSanabria Diego M, Mihaita Adriana Simona, Peimbert García Rodrigo E, et al. Digital twin technology challenges and applications: a comprehensive review[J]. Remote Sensing, 2022, 14(6): 1335-1335.
    [14]
    孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 6-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202009001.htm

    MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 6-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202009001.htm
    [15]
    王成山, 董博, 于浩, 等. 智慧城市综合能源系统数字孪生技术及应用[J]. 中国电机工程学报, 2021, 41(5): 1597-1608.

    WANG Chengshan, DONG Bo, YU Hao, et al. Digital twin technology and its application in the integrated energy system of smart city[C]//Proceedings of the CSEE, 2021, 41(5): 1597-1608.
    [16]
    XIA Haishan, LIU Zishuo, Efremochkina Maria, et al. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration[J]. Sustainable Cities and Society, 2022, 84: 104009.
    [17]
    朱庆, 张利国, 丁雨淋, 等. 从实景三维建模到数字孪生建模[J]. 测绘学报, 2022, 51(6): 1040-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206022.htm

    ZHU Qing, ZHANG Li guo, DING Yu ling, et al. From real 3D modeling to digital modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1040-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206022.htm
    [18]
    Purcell Warren, Neubauer Thomas. Digital twins in agriculture: a state-of-the-art review[J]. Smart Agricultural Technology, 2023(3): 100094.
    [19]
    郭亮, 张煜. 数字孪生在制造中的应用进展综述[J]. 机械科学与技术, 2020, 39(4): 590-598. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202004015.htm

    GUO Liang, ZHANG Yu. Review on application progress of digital twin in manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 590-598. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202004015.htm
    [20]
    Atalay Murat, Murat Ugur, Oksuz Busra, et al. Digital twins in manufacturing: systematic literature review for physical–digital layer categorization and future research directions[J]. International Journal of Computer Integrated Manufacturing, 2022, 35(7): 679-705.
    [21]
    张帆, 葛世荣, 李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术, 2020, 48(7): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007018.htm

    ZHANG Fan, GE Shirong, LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology, 2020, 48(7): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007018.htm
    [22]
    靳建峰, 王琳. 农产品供应链数字孪生体系构建研究[J]. 物流工程与管理, 2022, 44(6): 86-88, 132. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY202206020.htm

    JIN Jianfeng, WANG Lin. Research on the construction of agricultural products supply chain system based on digital twin[J]. Logistics Engineering and Management, 2022, 44(6): 86-88, 132. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY202206020.htm
    [23]
    付敏, 郝镒林, 李萌, 等. 安全工程技术领域数字孪生应用研究综述[J]. 中国安全生产科学技术, 2022, 18(4): 243-248. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202204035.htm

    FU Min, HAO Yilin, LI Meng, et al. Summary of digital twin application research in field of safety engineering technology[J]. Journal of Safety Science and Technology, 2022, 18(4): 243-248. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202204035.htm
    [24]
    Elkefi Safa, Asan Onur. Digital twins for managing health care systems: rapid literature review[J]. Journal of Medical Internet Research, 2022, 24(8): e37641-e37641.
  • Related Articles

    [1]LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801.
    [2]LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671.
    [3]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [4]WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
    [5]HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46.
    [6]SONG Jingjing, LI Zhonghui, ZHANG Xin, TIAN He, ZHENG Anqi, ZANG Zesheng, ZHANG Quancong. Research on Normalized Histogram Characterization of Infrared Thermal Image of Rock Sample Damage[J]. Infrared Technology , 2021, 43(8): 777-783.
    [7]LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574.
    [8]XU Hangwei, ZHAO Zhuang, YUE Jiang, BAI Lianfa. Real-time Unsupervised Classification Method of Hyperspectral Images Based on the Normalized Spectral Vector[J]. Infrared Technology , 2018, 40(4): 362-368.
    [9]GUO Jingbin, FENG Huajie, WANG Long, PENG Qinjian, LI Xingfei. Design of Focusing Window Based on Energy Function of Gradient[J]. Infrared Technology , 2016, 38(3): 197-202.
    [10]LIU Gang, HAN Jian-dong. A New 2*Image Interpolation Based on Gradient[J]. Infrared Technology , 2006, 28(6): 324-326. DOI: 10.3969/j.issn.1001-8891.2006.06.004

Catalog

    Article views (130) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return