JIANG Haijun, MA Zhaoqing, WANG Junhu, ZHANG Kai, LIN Xin. Research on Defect Size Measurement Methods for Infrared Thermography[J]. Infrared Technology , 2024, 46(1): 107-116.
Citation: JIANG Haijun, MA Zhaoqing, WANG Junhu, ZHANG Kai, LIN Xin. Research on Defect Size Measurement Methods for Infrared Thermography[J]. Infrared Technology , 2024, 46(1): 107-116.

Research on Defect Size Measurement Methods for Infrared Thermography

More Information
  • Received Date: September 18, 2023
  • Revised Date: November 02, 2023
  • Infrared thermography effectively detects internal defects in metals, non-metals, and composite materials. Defect size is a key parameter for evaluating the impact of defects. We used a half width height measurement algorithm to achieve semi-automatic measurement of defect size, manually drawing a straight line through the center of the defect to form a spatial pixel curve, and used the SG filtering algorithm to filter, automatically finding the half width height position of the spatial pixel curve, thus achieving defect size measurement. Through research on ABS plastic, carbon steel, and carbon fiber composite material specimens, it was found that the defect sizes measured by infrared images at different times have different errors. Using clear infrared images at different times, the measurement error was within 10%, whereas using fuzzy infrared images at different times, the measurement error was approximately 20%. This will effectively improve the accuracy of defect size measurements.
  • [1]
    刘颖韬, 郭广平, 杨党纲, 等. 脉冲热像法在航空复合材料构件无损检测中应用[J]. 航空材料学报, 2012, 32(1): 72-77.

    LIU Y T, GUO G P, YANG D G. Pulsed thermography of composite components used in aerospace applications[J]. Journal of Aeronautical Materials, 2012, 32(1): 72-77.
    [2]
    Khodayar F, Sojasi S, Maldague X. Infrared thermography and NDT: 2050 horizon[J]. Quantitative InfraRed Thermography Journal, 2016, 13(2): 22-25.
    [3]
    郑凯, 江海军, 陈力. 红外热波无损检测技术的研究现状与进展[J]. 红外技术, 2018, 40(5): 401-411. http://hwjs.nvir.cn/article/id/hwjs201805001

    ZHENG K, JIANG H J, CHEN L. Infrared thermography NDT and its development[J]. Infrared Technology, 2018, 40(5): 401-411. http://hwjs.nvir.cn/article/id/hwjs201805001
    [4]
    郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66.

    GUO W, DONG L H, XU B S, et al. Research status and progress of active infrared thermographic nondestructive testing[J]. Nondestructive Testing, 2016, 38(4): 58-66.
    [5]
    刘颖韬, 郭广平, 曾智, 等. 红外热像无损检测技术的发展历程、现状和趋势[J]. 无损检测, 2017, 39(8): 63-70.

    LIU Y T, GUO G P, ZENG Z, et al. The development history, status and trends of infrared thermographic nondestructive testing[J]. Nondestructive Testing, 2017, 39(8): 63-70.
    [6]
    WANG Q, HU Q P, QIU J X, et al. Using differential spread laser infrared thermography to detect delamination and impact damage in CFRP[J]. Infrared Physics & Technology, 2020, 106: 103282.
    [7]
    BU C W, LIU G Z, ZHANG X B, et al. Debonding defects detection of FMLs based on long pulsed infrared thermography technique[J]. Infrared Physics & Technology, 2020, 104: 103074.
    [8]
    Moskovchenko A I, Vavilov V P, Chulkov A O. Comparing the efficiency of defect depth characterization algorithms in the inspection of CFRP by using one-sided pulsed thermal NDT[J]. Infrared Physics & Technology, 2020, 107: 103289.
    [9]
    WANG Hongjin, WANG Nichen, HE Zhiyi, et al. Phase-locked restored pseudo heat flux thermography for detecting delamination inside carbon fiber reinforced composites[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2938-2946.
    [10]
    WANG F, WANG Y H, PENG W, et al. Independent component analysis enhanced pulse thermography for high silicon oxygen phenolic resin (HSOPR) sheet with subsurface defects [J]. Infrared Physics & Technology, 2018, 92: 345-349.
    [11]
    PAN M C, HE Y Z, TIAN G Y, et al. Defect characterization using pulsed eddy current thermography under transmission mode and NDT applications [J]. NDT & E International, 2012, 52: 28-36.
    [12]
    FEUILLET V, IBOS L, FOIS M, et al. Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling [J]. NDT & E International, 2012, 51: 58-67.
    [13]
    WANG Qiang, HU Qiuping, QIU Jinxing, et al. Using differ-ential spread laser infrared thermography to detect delami-nation and impact damage in CFRP[J]. Infrared Physics & Technology, 2020, 10(6): 1-10.
    [14]
    LEI L, Ferrarini G, Bortolin A, et al. Thermography iscool: defect detection using liquid nitrogen as a stimulus[J]. NDT & E International, 2019, 10(2): 137-143.
    [15]
    LIU Y, WU J Y, LIU K X, et al. Independent component thermography for non-destructive testing of defects in polymer composites[J]. Measurement Science and Technology, 2019, 30(4): 44-49.
    [16]
    李美华, 曾智, 沈京玲, 等. 脉冲红外无损检测缺陷深度定量测量的数值模拟[J]. 红外与激光工程, 2013, 42(4): 875-879.

    LI M H, ZENG Z, SHEN J L, et al. Numerical simulation of defects depth quantitative measurement in pulsed infrared nondestructive testing[J]. Infrared and Laser Engineering, 2013, 42(4): 875-879.
    [17]
    ZENG Zhi. Depth prediction of non-air interface defect using pulsed thermography[J]. NDT and E International, 2012, 48(6): 39-45.
    [18]
    李晓丽. 红外热波定量测量技术研究及其应用[D]. 北京: 北京理工大学, 2018.

    LI X L. Studies for Quantitatively Measuring Technique by Using Thermal Wave Imaging and Their Applications[D]. Beijing: Beijing Institute of Technology, 2018.
    [19]
    黄新萍. 基于脉冲红外热像法的缺陷尺寸测量及有限元模拟分析[D]. 北京: 首都师范大学, 2014.

    HUANG X P. The Study of Finite-Element Modeling of Defect Size Measuring for Pulsed Thermography Measurement[D]. Beijing: Capital Normal University, 2014.
    [20]
    Nodes T A, Galla gher N C J. Median filters: some modifications and their properties[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1982, 30(5): 739-746, Doi: 10.1109/TASSP.1982.1163951.
  • Related Articles

    [1]XU Shiwen, WANG Heng, ZHANG Hua, PANG Jie. Human Fall Detection Method Based on Key Points in Infrared Images[J]. Infrared Technology , 2021, 43(10): 1003-1007.
    [2]ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.
    [3]A Method of Object Tracking Based on Feature Point Matching[J]. Infrared Technology , 2016, 38(7): 597-601.
    [4]ZHAO De-li, ZHU You-pan, LI Yan, ZENG Bang-ze, PAN Chao, LUO Lin, WU Cheng. Investigation on Infrared and Low Light Level Image Registration Algorithm Based on Point Feature and Freeman Chain Code[J]. Infrared Technology , 2015, (6): 467-471.
    [5]ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826.
    [6]YU Hong-sheng, JIN Wei-qi. SIFT Key-points Self-adaptive Extraction Algorithm for Video Images[J]. Infrared Technology , 2013, (12): 768-772.
    [7]YANG Li, YANG Hua. The Key Techniques and Applications of Infrared False Target[J]. Infrared Technology , 2006, 28(9): 531-534. DOI: 10.3969/j.issn.1001-8891.2006.09.009
    [8]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005
    [9]Study on the Key Techniques of the Imaging Infrared Guidance for AAM[J]. Infrared Technology , 2003, 25(4): 45-48. DOI: 10.3969/j.issn.1001-8891.2003.04.011
    [10]Modification of the Infrared Point Measurement for Temperature[J]. Infrared Technology , 2002, 24(3): 49-51,55. DOI: 10.3969/j.issn.1001-8891.2002.03.013
  • Cited by

    Periodical cited type(2)

    1. 邢志坤. 基于LabVIEW的变电站移动机器人轨迹跟踪虚拟仿真系统设计. 自动化与仪表. 2024(07): 67-71 .
    2. 李辉,余大成,陈耀. 基于OWA算子和CWAA算子的变电站巡视周期优化. 广西电力. 2024(05): 50-54 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return