Citation: | HONG Li, ZENG Xiangjin. Infrared Target Detection Algorithm Based on Improved YOLOv8 in Complex Street Scenes[J]. Infrared Technology , 2025, 47(5): 591-600. |
Aiming at the problem of target misdetection and missed detection in infrared images under complex street backgrounds due to factors such as occlusion and lack of texture details, this paper proposes an infrared target detection algorithm for complex street scenes. Using YOLOv8n as the baseline model, firstly, a multi branch convolutional structure is designed to enhance feature extraction and expression. Structural reparameterization is used to decouple the training and inference stages, improve the inference speed of the model, and global self attention estimation is introduced to accelerate the calculation of attention. The time complexity is reduced to O(n), enabling the convolutional kernel attention to achieve dynamic identity. Secondly, combining the advantages of depthwise separable convolution and deformable convolution, after feature fusion between the upsampling results and the output features of the backbone network, a salient information aware deformable convolution attention gating mechanism is introduced to improve the semantic information richness of the fused features. Finally, An efficient intersection and union ratio replace the localization loss function, calculate the length and width influence factors of the predicted box and the true box separately, and accelerate the convergence speed. Validation experiments were conducted on the Flir dataset, and the average accuracy of the improved algorithm reached 79.5%, which is 3.9% higher than the YOLOv8n algorithm. This validates the superiority of the proposed algorithm in infrared target detection under complex street backgrounds.
[1] |
楼哲航, 罗素云. 基于YOLOX和Swin Transformer的车载红外目标检测[J]. 红外技术, 2022, 44(11): 1167-1175. http://hwjs.nvir.cn/article/id/3d31e429-9365-4797-ab65-60e06a4414d8
LOU Zhehang, LUO Suyun. Vehicle infrared target detection based on YOLOX and swin transformer[J]. Infrared Technology, 2022, 44(11): 1167-1175. http://hwjs.nvir.cn/article/id/3d31e429-9365-4797-ab65-60e06a4414d8
|
[2] |
DAI X, YUAN X, WEI X. TIRNet: Object detection in thermal infrared images for autonomous driving [J]. Applied Intelligence, 2020, 51(3): 1244-1261.
|
[3] |
易诗, 李欣荣, 吴志娟, 等. 基于红外热成像与改进YOLOV3的夜间野兔监测方法[J]. 农业工程学报, 2019, 35(19): 223-229.
YI Shi, LI Xinrong, WU Zhijuan, et al. Night hare detection method based on infrared thermal imaging and improved YOLOV3[J]. Transactions of the Chinese Society of Agricultural Engineering. 2019, 35(19): 223-229.
|
[4] |
刘晓文, 曾雪婷, 李涛, 等. 基于改进YOLO v7的生猪群体体温热红外自动检测方法[J]. 农业机械学报, 2023, 54(S1): 267-274. DOI: 10.6041/j.issn.1000-1298.2023.S1.029
LIU Xiaowen, ZENG Xueting, LI TAO, et al. Automatic detection method of body temperature in herd of pigs based on ilmproved YOLOv7[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(S1): 267-274. DOI: 10.6041/j.issn.1000-1298.2023.S1.029
|
[5] |
刘刚, 冯彦坤, 康熙. 基于改进YOLO v4的生猪耳根温度热红外视频检测方法[J]. 农业机械学报, 2023, 54(2): 240-248.
LIU GANG, FENG Yankun, KANG XI. Detection method of pig ear root temperature based on improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 240-248.
|
[6] |
ZHANG H, LUO C, WANG Q, et al. A novel infrared video surveillance system using deep learning based techniques [J]. Multimedia Tools and Applications, 2018: 77(20): 26657-26676. DOI: 10.1007/s11042-018-5883-y
|
[7] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
[8] |
Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
[9] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031
|
[10] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[11] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
|
[12] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv: 1804.02767, https://arxiv.org/abs/1804.02767.
|
[13] |
LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Computer Vision–ECCV Proceedings, 2016: 21-37.
|
[14] |
LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
[15] |
李强龙, 周新文, 位梦恩, 等. 基于条形池化和注意力机制的街道场景红外目标检测算法[J/OL]. 计算机工程: 1-13, [2023-05-20]. Doi: 10.19678/j.issn.1000-3428.0065481.
LI Qianglong, ZHOU Xinwen, WEI Meng'en, et al. Infrared target detection algorithm based on strip pooling and attention mechanism in street scene[J/OL]. Computer Engineering: 1-13, [2023-05-20]. Doi: 10.19678/j.issn.1000-3428.0065481.
|
[16] |
蒋昕昊, 蔡伟, 杨志勇, 等. 基于YOLO-IDSTD算法的红外弱小目标检测[J]. 红外与激光工程, 2022, 51(3): 502-511.
JIANG Xinhao, CAI Wei, YANG Zhiyong, et al. Infrared dim and small target detection based on YOLO-IDSTD algorithm[J]. Infrared and Laser Engineering, 2022, 51(3): 502-511.
|
[17] |
陈永麟, 王恒涛, 张上. 基于YOLO v7的轻量级红外目标检测算法[J]. 红外技术, 2024, 46(12): 1380-1389. http://hwjs.nvir.cn/article/id/e476d956-cfb7-4f3a-aafb-2e7b5e7a7890
CHEN Yonglin, WANG Hengtao, ZHANG Shang. Lightweight infrared target detection algorithm based on YOLOv7[J]. Infrared Technology, 2024, 46(12): 1380-1389. http://hwjs.nvir.cn/article/id/e476d956-cfb7-4f3a-aafb-2e7b5e7a7890
|
[18] |
蔡伟, 徐佩伟, 杨志勇, 等. 复杂背景下红外图像弱小目标检测[J]. 应用光学, 2021, 42(4): 643-650.
CAI Wei, XU Peiwei, YANG Zhiyong, et al. Dim-small targets detection of infrared images in complex backgrounds[J]. Journal of Applied Optics, 2021, 42(4): 643-650.
|
[19] |
WU Haiping, XIAO Bin, Noel Codella, et al. CvT: Introducing convolutions to vision transformers[J/OL]. arXiv: 2103.15808, https://doi.org/10.48550/arXiv.2103.15808.
|
[20] |
Irwan Bello, Barret Zoph, Quoc Le, et al. Attention augmented convolutional networks[C]// IEEE International Conference on Computer Vision, 2019: 3286-3295.
|
[21] |
ZHANG H, Fromont E, Lefevre S, et al. Multispectral fusion for object detection with cyclic fuse-and-refine blocks[C]//IEEE International Conference on Image Processing, 2020: 276-280.
|
[22] |
邓姗姗, 黄慧, 马燕. 基于改进Faster R-CNN的小目标检测算法[J]. 计算机工程与科学, 2023, 45(5): 869-877. DOI: 10.3969/j.issn.1007-130X.2023.05.012
DENG Shanshan, HUANG Hui, MA Yan. A small object detection algorithm based on improved Faster R-CNN[J]. Computer Engineering and Science, 2023, 45(5): 869-877. DOI: 10.3969/j.issn.1007-130X.2023.05.012
|
[23] |
郭勇, 张凯. 基于特征增强的快速红外目标检测[J]. 无线电工程, 2023, 53(1): 47-55.
GUO Yong, ZHANG Kai. Fast infrared object detection based on feature enhancement[J]. Radio Engineering, 2023, 53(1): 47-55.
|
[24] |
黄磊, 杨媛, 杨成煜, 等. FS-YOLOv5: 轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224.
HUANG Lei, YANG Yuan, YANG Chengyu, et al. FS-YOLOv5: lightweight infrared rode target detection method[J]. Computer Engineering and Applications, 2023, 59(9): 215-224.
|
[25] |
Girshick R, Felzenszwalb P, FMcAllester D. Object Detection with Discriminatively Trained Part Based Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167
|
[26] |
Pedersoli M, Vedaldi A, Gonz`alez J, et al. A coarse-to-fine approach for fast deformable object detection[J]. Pattern Recognition, 2015, 48(5): 1844-1853, .
|
[27] |
YAN J, LEI Z, WEN L, et al. The fastest deformable part model for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014: 2497-2504.
|