LI Shiji, LI Zhongmin, LI Wei. Pedestrian Detection Method Based on Improved ViBe and YOLO v3 Algorithms[J]. Infrared Technology , 2023, 45(2): 137-142.
Citation: LI Shiji, LI Zhongmin, LI Wei. Pedestrian Detection Method Based on Improved ViBe and YOLO v3 Algorithms[J]. Infrared Technology , 2023, 45(2): 137-142.

Pedestrian Detection Method Based on Improved ViBe and YOLO v3 Algorithms

More Information
  • Received Date: March 17, 2022
  • Revised Date: April 03, 2022
  • This paper presents an improved algorithm to solve the problem of ghosting in the visual background extractor (ViBe) algorithm for pedestrian detection. The initialization strategy of the ViBe algorithm is improved using the YOLO v3-spatial pyramid pooling (SPP) algorithm to eliminate ghosts. Thus, the YOLO v3-SPP algorithm detects pedestrians in the first frame, eliminates the detected pedestrians, and replaces the first frame of the ViBe algorithm with the output image to eliminate ghosts. The results of the analysis and verification show that the algorithm can effectively solve the ghost problem.
  • [1]
    Sobral A, Vacavant A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos[J]. Computer Vision and Image Understanding, 2014, 122(5): 4-21.
    [2]
    Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724. DOI: 10.1109/TIP.2010.2101613
    [3]
    闫硕, 陈科山. 基于双背景模型的鬼影抑制方法研究[J]. 计算机应用与软件, 2016, 33(5): 162-165. DOI: 10.3969/j.issn.1000-386x.2016.05.040

    YAN Shuo, CHEN Keshan. Study on ghost suppression method based on double background model[J]. Computer Applications and Software, 2016, 33(5): 162-165. DOI: 10.3969/j.issn.1000-386x.2016.05.040
    [4]
    郭冲宇, 杜慧敏. 视觉背景提取算法关键技术研究[J]. 计算机应用研究, 2017, 34(5): 1548-1552, 1589. DOI: 10.3969/j.issn.1001-3695.2017.05.061

    GUO Chongyu, DU Huimin. Key technologies of visual background extraction algorithm[J]. Computer Application Research, 2017, 34(5): 1548-1552, 1589. DOI: 10.3969/j.issn.1001-3695.2017.05.061
    [5]
    陈树, 丁保阔. 一种基于改进视觉背景提取算法的前景检测[J]. 计算机工程与科学, 2018, 40(4): 673-680. DOI: 10.3969/j.issn.1007-130X.2018.04.014

    CHEN Shu, DING Baokuo. A foreground detection based on improved visual background extraction algorithm[J]. Computer Engineering and Science, 2018, 40(4): 673-680. DOI: 10.3969/j.issn.1007-130X.2018.04.014
    [6]
    HAN X, GAO Y, LU Z, et al. Research on moving object detection algorithm based on improved three frame difference method and optical flow[C]//Fifth International Conference on Instrumentation & Measurement, 2015: 580-584.
    [7]
    杨丹, 戴芳. 运动目标检测的ViBe算法改进[J]. 中国图象图形学报, 2018, 23(12): 1813-1828. DOI: 10.11834/jig.180304

    YANG Dan, DAI Fang. Improvement of ViBe algorithm for moving target detection[J]. China Journal of Image Graphics, 2018, 23(12): 1813-1828. DOI: 10.11834/jig.180304
    [8]
    方岚, 于凤芹. 去除鬼影及阴影的视觉背景提取运动目标检测算法[J]. 激光与光电子学进展, 2019, 56(13): 131002. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201913009.htm

    FANG Lan, YU Fengqin. Moving object detection algorithm based on removed ghost and shadow visual background extractor[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131002. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201913009.htm
    [9]
    ZHAO D W, TAN J J, YANG W B, et al. An improved vibe algorithm for fast suppression of ghosts and static objects[C]//IEEE International Conference on Mechatronics and Automation(ICMA), 2018: 889-893.
    [10]
    Girshick R. Fast R-CNN[C]//IEEE International Conference on Computer Vision, 2015: 1440-1448.
    [11]
    Redmon J Farhadi A. YOLO v3 anincremental improvement[EB/OL]. [2018-04-08] [2022-02-08]. https://arxiv.org/abs/1804.02767.
    [12]
    HUANG G, LIU Z, Weinberger K Q, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
    [13]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
    [14]
    [15]
    赵建. 基于三帧差法的运动目标检测方法研究[D]. 西安: 西安电子科技大学, 2013.

    ZHAO Jian. The Research of Moving Target Detection Method Based on Three-frame Difference[D]. Xi'an: Xidian University, 2013.
    [16]
    STAUFFER C, GRIM SON W. Learning patterns of activityusing real-time tracking[J]. IEEE Translations on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757. DOI: 10.1109/34.868677
    [17]
    Goyette N, Jodoin P M, Porikli F, et al. Change detection. net: a new change detection benchmark dataset[C]//Computer Vision and Pattern Recognition Workshops, 2012: 1-8.
  • Related Articles

    [1]XU Shiwen, WANG Heng, ZHANG Hua, PANG Jie. Human Fall Detection Method Based on Key Points in Infrared Images[J]. Infrared Technology , 2021, 43(10): 1003-1007.
    [2]ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.
    [3]A Method of Object Tracking Based on Feature Point Matching[J]. Infrared Technology , 2016, 38(7): 597-601.
    [4]ZHAO De-li, ZHU You-pan, LI Yan, ZENG Bang-ze, PAN Chao, LUO Lin, WU Cheng. Investigation on Infrared and Low Light Level Image Registration Algorithm Based on Point Feature and Freeman Chain Code[J]. Infrared Technology , 2015, (6): 467-471.
    [5]ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826.
    [6]YU Hong-sheng, JIN Wei-qi. SIFT Key-points Self-adaptive Extraction Algorithm for Video Images[J]. Infrared Technology , 2013, (12): 768-772.
    [7]YANG Li, YANG Hua. The Key Techniques and Applications of Infrared False Target[J]. Infrared Technology , 2006, 28(9): 531-534. DOI: 10.3969/j.issn.1001-8891.2006.09.009
    [8]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005
    [9]Study on the Key Techniques of the Imaging Infrared Guidance for AAM[J]. Infrared Technology , 2003, 25(4): 45-48. DOI: 10.3969/j.issn.1001-8891.2003.04.011
    [10]Modification of the Infrared Point Measurement for Temperature[J]. Infrared Technology , 2002, 24(3): 49-51,55. DOI: 10.3969/j.issn.1001-8891.2002.03.013
  • Cited by

    Periodical cited type(2)

    1. 邢志坤. 基于LabVIEW的变电站移动机器人轨迹跟踪虚拟仿真系统设计. 自动化与仪表. 2024(07): 67-71 .
    2. 李辉,余大成,陈耀. 基于OWA算子和CWAA算子的变电站巡视周期优化. 广西电力. 2024(05): 50-54 .

    Other cited types(1)

Catalog

    Article views (188) PDF downloads (44) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return