ZHANG Jing, SHAN Changji, ZHOU Li, LI Xin, ZHU Hao. Recognition of High-Voltage Isolation Switch Opening and Closing State Based on Image Fusion[J]. Infrared Technology , 2024, 46(5): 539-547.
Citation: ZHANG Jing, SHAN Changji, ZHOU Li, LI Xin, ZHU Hao. Recognition of High-Voltage Isolation Switch Opening and Closing State Based on Image Fusion[J]. Infrared Technology , 2024, 46(5): 539-547.

Recognition of High-Voltage Isolation Switch Opening and Closing State Based on Image Fusion

More Information
  • Received Date: December 08, 2022
  • Revised Date: November 02, 2023
  • Available Online: May 23, 2024
  • To solve the low recognition rate problem of the existing isolation switch state identification, a method of image fusion based on NSST-PCNN-IFVSS is proposed. Image registration is performed in the preprocessing stage of infrared and visible light images; subsequently, pixels and fusion are used to achieve the fusion of the two images. In the fusion stage, the non-subsampled shearlet transform is used to decompose the infrared and visible light images into high- and low-frequency sub-band images. In the high-frequency sub-band image part, a pulse coupled neural network is used for fusion, whereas the image fusion method based on visual saliency segmentation is used for fusion in the low-frequency sub-band image part. The two sub-band images are combined by the inverse transform of the non-subsampled shearlet transform to obtain the fused image. A fusion quality index evaluation scheme is established to compare the effect of this method with common image fusion methods. The fused image is processed by a pixel integration projection algorithm to determine the state of the high-voltage isolation switch. Experimental simulation verifies that the image fusion effect of the non-subsampled shearlet transform-pulse coupled neural network-image fusion based on visual salience segmentation is better than six common fusion methods, and the recognition result after image fusion is better than that of the single visible light image and infrared image.

  • [1]
    XU J, LI Q, LUO Y, et al. State measurement of isolating switch using cost fusion and smoothness prior based stereo matching[J]. International Journal of Advanced Robotic Systems, 2020, 17(3): 172988142092529. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHB202405016.htm
    [2]
    LI Y, DONG X, LIU Z, et al. Design of grinding tool for isolating switch with multiple operating conditions in substation[J]. Journal of Physics: Conference Series, 2020, 1601(4): 042015-042019. DOI: 10.1088/1742-6596/1601/4/042015
    [3]
    曾小松, 罗菁, 姚强, 等. 500 kV GIS隔离开关触头温度监测及外壳温度传感器优化布置[J]. 高压电器, 2021, 57(10): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202401004.htm

    ZENG Xiaosong, LUO Jing, YAO Qiang, et al. Temperature monitoring of 500 kv GIS isolation switch contacts and optimal placement of shell temperature sensor[J]. High Voltage Electrical Apparatus, 2021, 57(10): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202401004.htm
    [4]
    陈富国, 蔡杰, 李中旗. 基于机器视觉的高压隔离开关设备状态判别与故障诊断技术[J]. 微型电脑应用, 2022, 38(2): 191-194. DOI: 10.3969/j.issn.1007-757X.2022.02.055

    CHEN Fuguo, CAI Jie, LI Zhongqi. State identification and Fault diagnosis of High voltage isolation Switchgear based on machine vision [J]. Microcomputer Applications, 2022, 38(2): 191-194. DOI: 10.3969/j.issn.1007-757X.2022.02.055
    [5]
    腾云, 雷丞, 李洪涛, 等. 基于HOG和SVM的高压隔离开关分合闸状态自动识别技术研究[J]. 高压电器, 2020, 56(9): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202009036.htm

    TENG Yun, LEI Cheng, LI Hongtao, et al. Research on automatic state recognition of high voltage isolation switch based on HOG and SVM [J]. High Voltage Electrical Apparatus, 2020, 56(9): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202009036.htm
    [6]
    刘子英, 张靖, 邓芳明. 基于BP神经网络的高压隔离开关分合闸监测识别[J]. 电力系统保护与控制, 2020, 48(5): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202005018.htm

    LIU Ziying, ZHANG Jing, DENG Fangming. On-off monitoring and identification of high voltage isolation switch based on BP neural network [J]. Power System Protection and Control, 2020, 48(5): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW202005018.htm
    [7]
    刘春来, 周涛涛, 马宏明, 等. 基于力矩与转角检测的GW4-126型隔离开关典型机械故障诊断[J]. 高压电器, 2020, 56(2): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202002037.htm

    LIU Chunlai, ZHOU Taotao, MA Hongming, et al. Typical mechanical fault diagnosis of GW4-126 isolation switch based on torque and angle detection [J]. High Voltage Electrical Apparatus, 2020, 56(2): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202002037.htm
    [8]
    于力, 曹双鹏, 荆澜涛, 等. 550 kV GIS内隔离开关机械故障仿真研究[J]. 高压电器, 2021, 57(10): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202405001.htm

    YU Li, CAO Shuangpeng, JING Lantao, et al. Mechanical fault simulation of isolation switch in 550 kV GIS[J]. High Voltage Electrical Apparatus, 2021, 57(10): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202405001.htm
    [9]
    刘仕兵, 宋陵灿, 郭文璟, 等. 基于定子电流特征与SVM高压隔离开关机构故障诊断[J]. 高压电器, 2020, 56(6): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202006043.htm

    LIU Shibing, SONG Lingcan, GUO Wenjing, et al. Fault diagnosis of high voltage isolation switch based on stator current characteristics and SVM[J]. High Voltage Electrical Apparatus, 2020, 56(6): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202006043.htm
    [10]
    CAO Y, TANG L, JIN R, et al. Grayscale image for broadband linear polarization measurement by an ultracompact metasurface[J]. Optics Letters, 2021, 46(5): 1117-1120. DOI: 10.1364/OL.415844
    [11]
    Ehsan S M, Imran M, Ullah A, et al. A single image dehazing technique using the dual transmission maps strategy and gradient-domain guided image filtering[J]. IEEE Access, 2021, 9: 89055-89063. DOI: 10.1109/ACCESS.2021.3090078
    [12]
    谢文昕, 马伟, 杜雪雪, 等. 起重机械金属结构缺陷的热成像技术研究[J]. 红外技术, 2022, 44(7): 741-749. http://hwjs.nvir.cn/cn/article/id/ef131bfa-8ddb-49e8-827f-f1ea324eb408

    XIE Wenxin, MA Wei, DU Xuexue, et al. Thermal imaging of metal structure defects in lifting machinery[J]. Infrared Technology, 2022, 44(7): 741-749. http://hwjs.nvir.cn/cn/article/id/ef131bfa-8ddb-49e8-827f-f1ea324eb408
    [13]
    Jhan J P, Rau J Y. A generalized tool for accurate and efficient image registration of UAV multi-lens multispectral cameras by n-surf matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6353-6362. DOI: 10.1109/JSTARS.2021.3079404
    [14]
    何凯, 刘坤, 沈成南, 等. 基于相似图像配准的图像修复算法[J]. 电子科技大学学报, 2021, 50(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202102008.htm

    HE Kai, LIU Kun, SHEN Chengnan, et al. Image restoration algorithm based on similar image registration[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202102008.htm
    [15]
    Dinesh K P, Jeetha B R. Canny edge detection and contrast stretching for facial expression detection and recognition using machine learning[J]. Far East Journal of Electronics and Communications, 2021, 24(1): 35-66. DOI: 10.17654/EC024010035
    [16]
    Radha R, Pushpa M. A comparative analysis of SIFT, SURF and ORB on sketch and paint based images[J]. International Journal of Forensic Engineering, 2021(8): 102-110.
    [17]
    Amir A, Mokhtar K. A deeper Newton descent direction with generalized Hessian matrix for SVMs: an application to face detection[J]. International Journal of Mathematical Modelling and Numerical Optimization, 2021, 11(2): 196-208. DOI: 10.1504/IJMMNO.2021.114485
    [18]
    Levenberg K A. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 2018, 2(4): 436-438.
    [19]
    HU Peng, WANG Chenjun, LI Dequan, et al. An improved hybrid multiscale fusion algorithm based on NSST for infrared–visible images[J]. The Visual Computer, 2024, 40: 1245-1259. DOI: 10.1007/s00371-023-02844-8
    [20]
    Basar S, Ali M, Ochoa-Ruiz G, et al. A novel defocused image segmentation method based on PCNN and LBP[J]. IEEE Access, 2021, 9: 87219-87240. DOI: 10.1109/ACCESS.2021.3084905
    [21]
    朱亚辉, 高逦. 基于复合分解与直觉模糊集的红外与可见光图像融合方法[J]. 西北工业大学学报, 2021, 39(4): 930-936. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202104028.htm

    ZHU Yahui, GAO Li. Infrared and visible image fusion method based on composite decomposition and intuitive fuzzy set[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 930-936. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202104028.htm
    [22]
    余映, 吴青龙, 邵凯旋, 等. 超复数域小波变换的显著性检测[J]. 电子与信息学报, 2019, 41(9): 2231-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201909028.htm

    YU Ying, WU Qinglong, SHAO Kaixuan, et al. Significance detection of wavelet transform in hypercomplex domain[J]. Journal of Electronics and Information Technology, 2019, 41(9): 2231-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201909028.htm
    [23]
    ZHANG Y, HAN J. Differential privacy fuzzy C-means clustering algorithm based on Gaussian kernel function[J]. PLOS ONE, 2021, 16(3): 1-20.
    [24]
    郭全民, 柴改霞, 李翰山. 夜视抗晕光融合图像自适应分区质量评价[J]. 电子与信息学报, 2020, 42(7): 1750-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202007025.htm

    GUO Quanmin, CHAI Gaixia, LI Hanshan. Quality evaluation of adaptive partition of night vision anti-halo fusion image[J]. Journal of Electronics and Information Technology, 2020, 42(7): 1750-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202007025.htm
    [25]
    杜云, 郑羽纶, 孟凡华. 基于Otsu法和直方图规定化相结合的苹果图像分割研究[J]. 科技创新与应用, 2019(28): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201928004.htm

    DU Yun, ZHENG Yulun, MENG Fanhua. Research on apple image segmentation based on Otsu method and histogram regularization [J]. Science and Technology Innovation and Application, 2019(28): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201928004.htm
  • Cited by

    Periodical cited type(19)

    1. 刘文斌,庹先国,张贵宇,罗琪,彭英杰. 基于卷积神经网络的白酒上甑探汽方法. 食品研究与开发. 2024(05): 139-144 .
    2. 孙胜华,何建强,陈伟锡,任哲,霍楚. 基于机器视觉的电源适配器外观质量检测装置设计与实现. 电子制作. 2024(09): 71-73+57 .
    3. 冯娟,刘永立. 压缩传感图像边缘自适应增强方法研究. 传感技术学报. 2024(05): 877-882 .
    4. 黄靖,林杨,林朝晖,陈斌艺. 改进Deeplab V3+在复合绝缘子红外热像分割中的应用. 电瓷避雷器. 2024(03): 157-166 .
    5. 冉庆鹏,付明春,李琼琳. 基于模糊数学的光学图像边缘自适应检测研究. 激光杂志. 2024(10): 147-151 .
    6. 蔡靖,王锴,李岳,戴轩. Canny算子+模糊C聚类融合的红外热成像机场道面积水识别方法. 科学技术与工程. 2024(28): 12382-12390 .
    7. 唐守锋,翟少奇,仝光明,钟鹏飞,史经灿,史凡. 改进Canny算子与形态学融合的边缘检测. 计算机工程与设计. 2023(01): 224-231 .
    8. 全燕南,吴松华,谭杰,赵建辉,苑雪山. 沉管隧道渗漏水红外自主检测技术. 激光与红外. 2023(02): 237-245 .
    9. 周红纲,郭莉,时鹏飞. 一种空间信息自适应的鲁棒模糊聚类算法. 青岛大学学报(工程技术版). 2023(01): 1-15 .
    10. 王小丽. 基于Vivado HLS雾天图像预处理IP核设计. 电脑编程技巧与维护. 2023(04): 158-161 .
    11. 孙思宇,丁红昌,曹国华. 基于轮廓匹配的夜晚环境下猫眼目标识别方法. 强激光与粒子束. 2023(06): 163-170 .
    12. 李凯臣,李俊芳,于晓,许晓刚,姜艳艳. 基于结构重建距离分水岭的细胞图像目标提取. 天津理工大学学报. 2023(04): 39-45 .
    13. 王俊霖,温兴平,罗大游,徐俊龙. 基于遥感影像和Canny算子的异龙湖形态特征变化. 兰州大学学报(自然科学版). 2023(03): 364-370 .
    14. 陈钰,郭立强. 基于SWT和边缘检测的红外与可见光图像融合算法. 淮阴师范学院学报(自然科学版). 2023(03): 202-209 .
    15. 彭双平. 图像边缘检测算法的Simulink实现及改进. 舰船电子工程. 2023(09): 121-125+165 .
    16. 李雪梅,钟坚. 加权核范数的边缘检测在最小化图像去噪中的应用. 自动化与仪器仪表. 2022(04): 16-20 .
    17. 王东升,王海龙,张芳,韩林芳,赵怡琳. 基于时序信息的红外图像缺陷信息提取. 红外技术. 2022(06): 565-570 . 本站查看
    18. 韦德鹏,陈继清,罗天,张宏都,龙腾. 基于改进八方向Sobel算子的图像轮廓提取方法. 现代电子技术. 2022(19): 54-58 .
    19. 孙炜玮,孙艳丽,刘治江. 一种复杂海天背景下红外图像舰船目标检测方法. 舰船电子工程. 2022(10): 36-39+55 .

    Other cited types(34)

Catalog

    Article views (50) PDF downloads (15) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return