LI Jianghui, LUO Bing. Method and System of One-key Automatic Gun Calibration Based on Infrared Sight[J]. Infrared Technology , 2023, 45(8): 822-827.
Citation: LI Jianghui, LUO Bing. Method and System of One-key Automatic Gun Calibration Based on Infrared Sight[J]. Infrared Technology , 2023, 45(8): 822-827.

Method and System of One-key Automatic Gun Calibration Based on Infrared Sight

More Information
  • Received Date: July 11, 2022
  • Revised Date: September 20, 2022
  • Due to the night-vision display function of infrared images and their ability to observe targets over long distances, they are often used in sniper sights for firearms. However, when an infrared sight is first installed on a firearm, it is necessary to calibrate the zero position such that the cross-division center of the infrared sight coincides with the target center of the firearm during sniping. A target can only be accurately hit during sniping if the infrared sight has undergone zero calibration. Performing automatic and efficient zero calibration is a problem in that every infrared sight differs when it is first used. This article investigates the current mainstream zero calibration methods, analyzes and compares them, and proposes an efficient automatic calibration method and process based on single-key triggering, which simplifies the calibration process and improves its efficiency. In engineering applications, it solves the problem of difficult and slow calibration of infrared sights during initial use and greatly improves the user experience.
  • [1]
    李冰, 李范鸣. 基于PCI Express总线的红外图像实时采集与显示系统及其界面设计[J]. 红外, 2016, 37(9): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201612004.htm

    LI Bing, LI Fanming. Real-time infrared image acquisition and display system based on PCI Express bus and its interface design[J]. Infrared, 2016, 37(9): 8-12 https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201612004.htm
    [2]
    李大华, 王宇, 高强, 等. 基于细胞免疫的红外图像分割算法及FPGA实现[J]. 红外, 2020, 41(4): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202004005.htm

    LI Dahua, WANG Yu, GAO Qiang, et al. Infrared image segmentation algorithm and FPGA implementation based on cellular immunity[J]. Infrared, 2020, 41(4): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202004005.htm
    [3]
    李强. 基于FPGA的实时红外图像采集与预处理系统[J]. 红外, 2012, 33(10): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201210006.htm

    LI Qiang. Real-time infrared image acquisition and preprocessing system based on FPGA[J]. Infrared, 2012, 33(10): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201210006.htm
    [4]
    赵立初, 周煦潼. 模板图像匹配中的亚像元定位新方法[J]. 红外与毫米波学报, 1999, 18(5): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH199905012.htm

    ZHAO Lichu, ZHOU Xutong. A new algorithm with sub-pixel accuracy in image/model matching[J]. J. Infrared Millim. Waves, 1999, 18(5): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH199905012.htm
    [5]
    吕明义. 红外辐射源的校准方法[J/OL]. 红外与毫米波学报, 1984, 3(4): http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/198404110.

    LU Mingyi. Calibration method of Infrared radiation source[J/OL]. Journal of Infrared and Millimeter Waves, 1984, 3(4): http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/198404110.
    [6]
    韩义波, 杨新锋, 滕书华, 等. 激光与红外融合目标检测[J]. 红外与激光工程, 2018, 47(8): 804005-0804005(7). DOI: 10.3788/IRLA201847.0804005.

    HAN Yibo, YANG Xinfeng, TENG Shuhua, et al. Detection of laser and infrared fusion target[J]. Infrared and Laser Engineering, 2018, 47(8): 804005-0804005(7). DOI: 10.3788/IRLA201847.0804005.
    [7]
    宋宏, 张云菲, 吴超鹏, 等. 水下相位式激光测距定标方法[J]. 红外与激光工程, 2019, 48(4): 406008-0406008(7). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201904021.htm

    SONG Hong, ZHANG Yunfei, WU Chaopeng, et al. Calibration method of underwater phase laser ranging[J]. Infrared and Laser Engineering, 2019, 48(4): 406008-0406008(7). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201904021.htm
    [8]
    胡波, 张云菲, 吴超鹏, 等. 基于图像的水下三点激光测距方法研究[J]. 红外与激光工程, 2019, 48(10): 1005011-1005011(10). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201910018.htm

    HU Bo, ZHANG Yunfei, WU Chaopeng, et al. Image-based three-beam underwater laser ranging method[J]. Infrared and Laser Engineering, 2019, 48(10): 1005011-1005011(10). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201910018.htm
    [9]
    崔成君, 劳达宝, 董登峰, 等. 飞秒激光跟踪仪跟踪脱靶量零位标定方法[J]. 红外与激光工程, 2017, 46(1): 117001-0117001(8). DOI: 10.3788/IRLA201746.0117001.

    CUI Chengjun, LAO Dabao, DONG Dengfeng, et al. Calibration method for initial position of miss distance in femtosecond laser tracker[J]. Infrared and Laser Engineering, 2017, 46(1): 117001-0117001(8). DOI: 10.3788/IRLA201746.0117001.
    [10]
    李延风, 安志勇, 王劲松, 等. 红外零位走动量测量中的相机姿态自适应补偿[J]. 红外与激光工程, 2015, 44(5) : 1500-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505020.htm

    LI Yanfeng, AN Zhiyong, WANG Jinsong, et al. Camera position adaptive compensation in infrared zero momentum measuring[J]. Infrared and Laser Engineering, 2015, 44(5): 1500-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505020.htm
    [11]
    门涛, 杨悦, 徐蓉, 等. 增量式光电轴角编码器零点漂移问题解决[J]. 红外与激光工程, 2014, 43(2) : 497-501. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201402030.htm

    MEN Tao, YANG Yue, XU Rong, et al. Resolution of incremental photoelectric angular encoder with reference mark excursion[J]. Infrared and Laser Engineering, 2014, 43(2): 497-501. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201402030.htm
    [12]
    王辉, 吕瑛洁, 林德福, 等. 扩展弹道成型制导系统脱靶量特性分析[J]. 红外与激光工程, 2013, 42(5): 1322-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201312033.htm

    WANG Hui, LV Yingjie, LIN Defu, et al. Miss distance analysis of the extended trajectory shaping guided systems[J]. Infrared and Laser Engineering, 2013, 42(5): 1322-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201312033.htm
    [13]
    钟昆, 苏伟, 彭波, 等. 基于脱靶量的水下目标激光扫描探测模型[J]. 红外与激光工程, 2020, 49(2): 0203004-0203004. DOI: 10.3788/IRLA202049.0203004.

    ZHONG Kun, SU Wei, PENG Bo, et al. Model of underwater target laser scanning detection based on undershoot distance[J]. Infrared and Laser Engineering, 2020, 49(2): 0203004-0203004. DOI: 10.3788/IRLA202049.0203004.
    [14]
    肖瑞兵, 李林, 李彦生, 等. 一种测试零位走动量的新方法[J]. 红外技术, 2017, 39(2): 178-183. http://hwjs.nvir.cn/article/id/hwjs201702013

    XIAO Ruibing, LI Lin, LI Yansheng, WANG Guiquan, et al. A new method to measure the zero position offset[J]. Infrared Technology, 2017, 39(2): 178-183. http://hwjs.nvir.cn/article/id/hwjs201702013
    [15]
    王东, 周清明, 张鹏, 等. 红外告警系统被动测距方法分析[J]. 红外技术, 2010, 32(8): 440-442. DOI: 10.3969/j.issn.1001-8891. 2010.08.002.

    WANG Dong, ZHOU Qingming, ZHANG Peng, et al. An analysis on passive ranging measurement of IRST systems[J]. Infrared Technology, 2010, 32(8): 440-442. DOI: 10.3969/j.issn.1001-8891.2010.08.002.
  • Related Articles

    [1]HAN Junjun, MA Jun, WANG Bokai. Infrared Weak and Small Target Detection Algorithm Based on Image Variance and Signal-To-Noise Ratio[J]. Infrared Technology , 2024, 46(11): 1293-1301.
    [2]CHEN Xu, WU Wei, PENG Dongliang, GU Yu. Infrared-PV: an Infrared Target Detection Dataset for Surveillance Application[J]. Infrared Technology , 2023, 45(12): 1304-1313.
    [3]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [4]LOU Zhehang, LUO Suyun. Vehicle Infrared Target Detection Based on YOLOX and Swin Transformer[J]. Infrared Technology , 2022, 44(11): 1167-1175.
    [5]WU Ze, MIAO Xiaodong, LI Weiwen, YU Hu. Low-Visibility Road Target Detection Algorithm Based on Infrared and Visible Light Fusion[J]. Infrared Technology , 2022, 44(11): 1154-1160.
    [6]YANG Qili, ZHOU Binghong, ZHENG Wei, LI Mingtao. Small Infrared Target Detection Based on Fully Convolutional Network[J]. Infrared Technology , 2021, 43(4): 349-356.
    [7]ZHAO Hongshan, ZHANG Zeyan, MENG Hang, ZHANG Junhao. Infrared Target Detection of High Voltage Insulation Bushing Based on Textural Features[J]. Infrared Technology , 2021, 43(3): 258-265.
    [8]GU Jiaojiao, LI Bingzhen, LIU Ke, JIANG Wenzhi. Infrared Ship Target Detection Algorithm Based on Improved Faster R-CNN[J]. Infrared Technology , 2021, 43(2): 170-178.
    [9]Human-computer Interaction Technology though Eye-gaze Based on Infrared TV Method[J]. Infrared Technology , 2002, 24(4): 1-3. DOI: 10.3969/j.issn.1001-8891.2002.04.001
    [10]PAN Le-yi, ZHENG Lian, WANG Ke-yong. Infrared Image Generating of the Target in the Sky[J]. Infrared Technology , 2000, 22(4): 4-9. DOI: 10.3969/j.issn.1001-8891.2000.04.002

Catalog

    Article views (248) PDF downloads (66) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return