LEI Cheng, WU Xuezhan, LIANG Ting, MA Ye, GUANG Yihao, DONG Zhichao, LI Qiang, QI Lei. Design and Simulation of Thermopile Laser Power Meter[J]. Infrared Technology , 2022, 44(2): 157-162.
Citation: LEI Cheng, WU Xuezhan, LIANG Ting, MA Ye, GUANG Yihao, DONG Zhichao, LI Qiang, QI Lei. Design and Simulation of Thermopile Laser Power Meter[J]. Infrared Technology , 2022, 44(2): 157-162.

Design and Simulation of Thermopile Laser Power Meter

More Information
  • Received Date: June 24, 2021
  • Revised Date: October 15, 2021
  • To address the need to test the output power of ultraviolet, visible, and infrared lasers, this study proposes a thermopile laser power meter composed of a heat transfer body, an absorption layer, an insulating layer, and a thermocouple. Combining the thermal effect and Seebeck effect theory, Solidworks 3D design software is used to build models of different key structure sizes, and a thermoelectric coupling simulation analysis model is established using ANSYS Workbench simulation software to analyze the influence of key structure size parameters on the output voltage and temperature distribution. The thermopile laser power meter is designed using mechanical processing, coating, and sandblasting, and the package structure and circuit compensation are designed to amplify and calibrate the output voltage. The results show that the key factors affecting the output voltage of the laser power meter are the thickness of the heat transfer body, the number of thermal couples, and the length of the thermal couple.
  • [1]
    XU Bai. Calibration technology and application of laser power meter[J]. The Journal of Engineering, 2019, 2019(23): 8806-8811. DOI: 10.1049/joe.2018.9111
    [2]
    林延东. 热电型光辐射探测器时间响应特性的研究[J]. 计量学报, 2008(4): 313-316. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB200804005.htm

    LIN Yandong. Characterization of temporal response for thermal detector of radiation[J]. Acta Metrologica Sinica, 2008(4): 313-316. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB200804005.htm
    [3]
    陈舒凡, 房丰洲. 激光功率计发展及应用[J]. 激光与光电子学进展, 2021, 58(9): 0900003. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202109004.htm

    CHEN Shufan, FANG Fengzhou. Development and applications of laser power meter[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900003. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202109004.htm
    [4]
    向莉. 智能微弱激光功率计的研究[J]. 中国新通信, 2017, 19(13): 146-147. DOI: 10.3969/j.issn.1673-4866.2017.13.117

    XIANG Li. Research on intelligent weak laser power meter[J]. China New Telecommunications, 2017, 19(13): 146-147. DOI: 10.3969/j.issn.1673-4866.2017.13.117
    [5]
    李竞男, 鲍爱达, 秦丽. 基于高性能黑硅MEMS热电堆的激光功率测试方法[J]. 激光与光电子学进展, 2016, 53(11): 112501. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201611036.htm

    LI Jingnan, BAO Aida, QIN Li. Laser power measurement method based on high performance black silicon MEMS thermopile[J]. Laser & Optoelectronics Progress, 2016, 53(11): 112501. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201611036.htm
    [6]
    莫旭清. 百瓦级激光功率的测量方法研究[D]. 武汉: 湖北工业大学, 2015.

    MO Xuqing. Research About the Measurement of the Laser Power with Hundred Watt Level[D]. Wuhan: Hubei University of Technology, 2015.
    [7]
    黎高平, 陈超, 李栋, 等. 高能高功率激光参数测量技术研究[J]. 应用光学, 2020, 41(4): 645-650. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202004001.htm

    LI Gaoping, CHEN Chao, LI dong, et al. Research on high-energy and high-power laser parameter measurement technology[J]. Journal of Applied Optics, 2020, 41(4): 645-650. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202004001.htm
    [8]
    Rouhollah K, Mohammadreza A, Mohammadmehdi J, et al. Low cost and facile fabrication of broadband laser power meter based on reduced graphene oxide film[J]. Materials Research Bulletin, 2018, 100: 42-48. DOI: 10.1016/j.materresbull.2017.12.007
    [9]
    Soni R K, Mandloie V K, Pote M B, et al. Spinning cone water film power meter for high-power CO2 lasers[J]. Optics and Laser Technology, 2005, 39(1): 196-301. http://www.researchgate.net/profile/Rakesh_Soni2/publication/252803763_Spinning_cone_water_film_power_meter_for_high-power_CO2_lasers/links/0deec5228720caa29f000000.pdf
    [10]
    雷程. 双端梁MEMS热电堆红外探测器关键技术研究[D]. 太原: 中北大学, 2016.

    LEI Chen. Research on the Key Technologies of Double-end-beam MEMS Thermopile IR Detector[D]. Taiyuan: North University of China, 2016.
    [11]
    张萍, 毕野, 孙尚勇, 等. 小型一体便携式1060 nm激光功率计: CN210625848U[P]. 吉林: 2020-05-26.

    ZHANG Ping, BI Ye, SUN Shangyong, et al. Small Integrated Portable 1060 nm Laser Power Meter: CN210625848U[P]. Jilin: 2020-05-26.
    [12]
    潘吴达. 一种测量激光器激光功率的传感器及激光功率计: CN112729537A[P]. 浙江: 2021-04-30.

    PAN Wuda. A Sensor and Laser Power Meter for Measuring Laser Power: CN112729537A[P]. Zhejiang: 2021-04-30.
    [13]
    月祥, 宁可庆, 高然, 等. 智能化激光功率计: CN201508234U[P]. 北京: 2010-06-16.

    YUE Xiang, NING Keqing, GAO Ran, et al. Intelligent Laser Power Meter: CN201508234U[P]. Beijing: 2010-06-16.
    [14]
    蒋刚刚, 薛琳, 朱彤, 等. 基于LPC1754的高精度激光功率计设计[J]. 仪表技术与传感器, 2019(3): 55-58. DOI: 10.3969/j.issn.1002-1841.2019.03.012

    JIANG Ganggang, XUE Lin, ZHU Dan, et al. Design of high precision laser power metre based on LPC1754[J]. Instrument Technique and Sensor, 2019(3): 55-58. DOI: 10.3969/j.issn.1002-1841.2019.03.012
  • Related Articles

    [1]JIN Yongwei, LIU Chunlong. Sensitivity Analysis of Thermal Design Parameters of High-Sensitivity Optical Detection Module[J]. Infrared Technology , 2025, 47(2): 141-147.
    [2]TAN Dan, ZHANG Zhijie, WANG Luxiang, WANG Dingerkai. Finite Element Simulation Analysis of Nondestructive Testing Parameters in Line Laser Scanning Thermal Imaging[J]. Infrared Technology , 2025, 47(1): 121-129.
    [3]LIU Qi, GAI Fangqin, YE Youshi, LIU Bo, SHI Lei. Micro-Infrared Thermopile Detector Space Applications Based on FPGA[J]. Infrared Technology , 2020, 42(7): 611-617.
    [4]MAO Yi-fan, ZHANG Duo-lin, WANG Lu. Simulation Analysis of Ballistic Missile Detection by STSS[J]. Infrared Technology , 2015, (3): 218-223.
    [5]ZHAO Li-Jun, OU Wen, YAN Jian-Hua, MING An-Jie, YUAN Feng, XIA Yan. Fabrication of a Thermopile Infrared Detector That Compatible with CMOS Process[J]. Infrared Technology , 2012, 34(2): 89-94. DOI: 10.3969/j.issn.1001-8891.2012.02.006
    [6]ZHOU Lian-jun, ZOU Peng-cheng, LI Jin-hui, LI Yu, LI Xin-rong. The Analysis of Stress Using FEA for the Pixel Structure of Uncooled Microbolometer Arrays[J]. Infrared Technology , 2010, 32(2): 63-67. DOI: 10.3969/j.issn.1001-8891.2010.02.001
    [7]CAI Shi-ping, SHEN Guo-tu, CAI Ji-guang, DONG Zhan-hai, GAO Jing. Generation of the Finite Element Model and Its Application on Thermal Analysis[J]. Infrared Technology , 2009, 31(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2009.05.009
    [8]ZHAO Jing-yuan, WANG Li-ming, LIU Bin. The Finite Element Simulation and Analysis of the Infrared NDT for Inner Defects in Casting Product[J]. Infrared Technology , 2008, 30(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2008.07.016
    [9]LANG Jia-hong, QIN Fu-wen, GU Biao. Study on Thin Film Growth Temperature by ECR-PEMOCVD Based on the Double Thermocouples[J]. Infrared Technology , 2007, 29(2): 79-82. DOI: 10.3969/j.issn.1001-8891.2007.02.005
    [10]Micromachined Uncooled Infrared Thermopile Detector[J]. Infrared Technology , 2005, 27(1): 34-38. DOI: 10.3969/j.issn.1001-8891.2005.01.008
  • Cited by

    Periodical cited type(1)

    1. 施飞宇,张京会,蔡亦华,蒋涛,李林格,方平,沐超,黄童,范承玉. 无线激光功率计数据采集传输模块设计. 量子电子学报. 2024(05): 752-760 .

    Other cited types(0)

Catalog

    Article views (180) PDF downloads (60) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return