Citation: | WANG Silong, SUN Aiping, LI Xunniu, YU Jiatong, ZHOU Lingling, CHEN Yurou, PI Dongming. Research Progress of an Electron Bombarded Active Pixel Sensor[J]. Infrared Technology , 2024, 46(10): 1120-1129. |
An electron bombarded active pixel sensor(EBAPS) is a novel, digital low-light device characterized by its low power consumption, high sensitivity, and suitability for extreme low-light detection. This study begins with the principles of the EBAPS, focusing on the internal structure of the sensor's cathode and anode to elucidate the working process of the EBAPS from its input of optical signals to its output of digital images. This study further analyzes the structural features of the EBAPS optical system and, combined with a series of EBAPS products from the Intevac Corporation, reviews the development iterations and applications of the EBAPS. Finally, this study summarizes the various factors affecting the performance of EBAPS sensors and discusses the development trends of such devices.
[1] |
白晋周. 电子轰击有源像素传感器关键技术及应用研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2022.
BAI Jinzhou. Research on Key Technology and Application of Electron Bombardment Active Pixel Sensor[D]. Xi'an: University of Chinese Academy of Sciences (Xi'an Optical Precision Mechanical Research, CAS), 2022.
|
[2] |
田金生. 微光像传感器技术的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
TIAN Jinsheng. Latest development of low light level image sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
|
[3] |
Aebi V W, James B J. Electron bombarded active pixel sensor: CA20002379956[P]. [2001-01-25].
|
[4] |
熊智鹏, 李琦, 王骐. 电子轰击型有源像素传感器在激光雷达的应用[J]. 激光与红外, 2012, 42(7): 725-730.
XIONG Zhipeng, LI Qi, WANG Qi. Application of electron bombardment active pixel sensor in lidar[J]. Laser and Infrared, 2012, 42(7): 725-730.
|
[5] |
BAI J, BAI Y, HOU X, et al. The analysis of electron scattering among multiplying layer in EBAPS using optimized Monte Carlo method[J]. Modern Physics Letters B, 2020(1): 2050398. DOI: 10.1142/S0217984920503984.
|
[6] |
Intevac Inc. Apache M611-02 Low Light Level Camera[EB/OL]. [2019-02-23]. https://www.intevac.com/intevacphotonics/apache-camera/.
|
[7] |
INSINNA VALERI. Special Operators To Test Digital Night Vision Goggles[J/OL]. National Defense, 2013, 98(72): https://law-journals-books.vlex.com/vid/special-operators-to-test-635938861
|
[8] |
蔡志鹏. 用于双微带阴极选通型分幅相机的改进型第三代像增强器研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013.
CAI Zhipeng. Research on Improved Third Generation Image Intensifier for Dual Microstrip Cathode Gate Amplitude Divider Camera[D]. Xi'an: Graduate School of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), 2013.
|
[9] |
吴昊, 伍园. 数字微光夜视器件技术研究[J]. 光电子技术, 2022, 42(1): 72-78.
WU Hao, WU Yuan. Technology research of digital low light level night vision device[J]. Optoelectronic Technology, 2022, 42(1): 72-78.
|
[10] |
李晓峰, 杨文波, 王俊. 用光致荧光研究多碱阴极光电发射机理[J]. 光子学报, 2012, 41(12): 1435-1440.
LI Xiaofeng, YANG Wenbo, WANG Jun. Photoemission mechanism of multi-alkali photocathode by photoluminescence[J]. Acta Photonica Sinica, 2012, 41(12): 1435-1440
|
[11] |
常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017.
CHANG Benkang. Photocathode Base on GaAs[M]. Beijing: Science Press, 2017.
|
[12] |
Chrzanowski K. Review of night vision technology[J]. Opto-electronics Review, 2013, 21(2): 153-181. DOI: 10.2478/s11772-013-0089-3.
|
[13] |
Jeff Andreson. Intevac announces LIV AR digital camera pro-duction drders[EB/OL]. [2013-02-08]. https://www.intevac.com.
|
[14] |
Norton T, Joseph C, Woodgate B E, et al. High quantum efficiency photon-counting imaging detector development for UV(50-320 nm) astronomical observations[C]// AAS Meeting, 2011, 43: 21725419N.
|
[15] |
Intevac Inc. Apache M611-05 low light level camera[EB/OL]. [2021-03-04]. https://www.intevac.com/.
|
[16] |
金伟其, 陶禹, 石峰, 等. 微光视频器件及其技术的进展[J]. 红外与激光工程, 2015, 44(11): 3167-3176.
JIN Weiqi, TAO Yu, SHI Feng, et al. Development of low-light video devices and their technology[J]. Infrared and Laser Engineering, 2015, 44(11): 3167-3176.
|
[17] |
Intevac Inc. NightVista®VISNIR Cameras[EB/OL]. [2021-03-04]. https:/www.intevac.com/intevacphotonics/military.
|
[18] |
Intevac Inc. Apache M506 low light level camera[EB/OL]. [2021-03-04]. https://www.intevac.com/intevacphotonics/dnvg/.
|
[19] |
刘亚宁. 基于低功耗小体积FPGA的EBAPS相机技术[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019.
LIU Yaning. EBAPS camera technology based on low power and small size FPGA [D]. Beijing: University of the Chinese Academy of Sciences (National Center for Space Science, CAS), 2019.
|
[20] |
Intevac Photonics. Advances in electronic bombardment of active pixel sensors: E3010M digital image intensifier(DI2)[EB/OL]. [2022-07-04]. http://wwwintevac.com/Intevacphotonics.
|
[21] |
Collins Aviation Corp. Collins new airborne digital night vision system[EB/OL]. [2020-06-23]. https://www.collinsaerospace.com/what-we-do/industries/military-and-defense/displays-and-controls/si-mulation-and-training-helmet-mounted–displays.
|
[22] |
Redman B C, Stann B L, Ruff W C, et al. Anti-ship missile tracking with a chirped amplitude modulation ladar[C]//Laser Systems Technology Ⅱ, 2004: 5-7(DOI: 10.1117/12.542598).
|
[23] |
Grasso R J, Odhner J E, Wikman J C, et al. A novel low-cost targeting system (LCTS) based upon a high-resolution 2D imaging laser radar[C]//Proceedings of SPIE, 2005, 47: 190-194. DOI: 10.1117/12.630525.
|
[24] |
Stann B, Redman B C, Lawler W, et al. Chirped amplitude modulation ladar for range and doppler measurements and 3-D imaging[C]//Proceedings of SPIE, 2007, 6550: 655005-655005-12. DOI: 10.1117/12.719523.
|
[25] |
Photonis EBNocturn 2MPX[EB/OL][2012-04-23]. https://www.directindustry-china.cn/prod/photonis/product-82199-2210683.
|
[26] |
朴雪. 电子轰击有源像素传感器电荷收集效率理论模拟研究[D]. 长春: 长春理工大学, 2017.
PU X. Theoretical Simulation of Charge Collection Efficiency of Active Pixel Sensor Under Electron Bombardment [D]. Changchun: Changchun University of Science and Technology, 2017.
|
[27] |
程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1098-1100.
CHENG Hongchang, SHI Feng, LI Zhoukui, et al. A preliminary approach to the generation of low light level night vision devices[J]. Applied Optics, 2021, 42(6): 1098-1100.
|
[28] |
刘虎林, 王兴, 田进寿, 等. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究[J]. 物理学报, 2018, 67(1): 175-180.
LIU Hulin, WANG Xing, TIAN Jinshou, et al. Experimental study on high resolution ultraviolet electron bombardment of complementary metal oxide semiconductor device [J]. Acta Physica Sinica, 2018, 67(1): 175-180.
|
[29] |
YE Y, KUN H, LEI Y, et al. Study on effect of different temperatures on imaging performance of EBAPS devices[C]//Symposium on Novel Photoelectronic Detection Technology and Applications, 2020, DOI: 10.1117/12.2587110.
|
[30] |
李桐桐, 肖超, 焦岗成, 等. 电子敏感CMOS部件除气方法[J]. 应用光学, 2022, 43(6): 1181-1186.
LI Tongtong, XIAO Chao, JIAO Gangcheng, et al. Degassing method for electron-sensitive CMOS components[J]. Applied Optics, 2022, 43(6): 1181-1186.
|
[31] |
刘璇, 李瑞强, 李力, 等. 基于三色LCTF的自然感彩色微光EBAPS成像系统[J]. 应用光学, 2022, 43(6): 1044-1053.
LIU Xuan, LI Ruiqiang, LI Li, et al. Natural color low-light EBAPS imaging system based on three-color LCTF[J]. Applied Optics, 2022, 43(6): 1044-1053.
|
[1] | JIAO Songfeng, XIE Qiming, LIU Yao, WANG Yizhuo, FAN Wei, YOU Jinjing, YANG Yonghua, ZHANG Chengang. Optical Aspheric Surface Profile Testing Technology[J]. Infrared Technology , 2023, 45(5): 534-540. |
[2] | XU Zhengkui, WANG Chunxing, WANG Shijing, WANG Guiquan, CAI Shunwen, LI Xiaobin, HUANG Sheng. Design and Development of a Cassegrain Off-axis Reflection System Collimator[J]. Infrared Technology , 2020, 42(12): 1164-1169. |
[3] | LI Lei, ZHANG Bao, LI Quanchao. Topology Optimization of Primary Mirror in Airborne Infrared System[J]. Infrared Technology , 2016, 38(8): 648-652. |
[4] | LIU Yan-jie, HUI Bin, LI Jing-zhen, DING Jin-fei, ZHU Tian-long. Design and Simulation of Free-form TIR Collimating Lens Used in DLP Projector System[J]. Infrared Technology , 2015, 37(7): 582-587. |
[5] | FAN Lei, ZHAO Yong-zhi, CAO Yu-yan. Design and Analysis of Metal Mirror for Infrared Off-axial System[J]. Infrared Technology , 2015, (5): 374-379. |
[6] | YAO Bo, YUAN Li-yin, QI Hong-xing, SHU Rong. Optical Design of a Dual-channel Imaging Spectrometer Sharing the Off-axis TMA System[J]. Infrared Technology , 2013, (7): 419-424. |
[7] | SUN Yan-jun, LENG Yan-bing, CHEN Zhe, DONG Lian-he. Study on Optical Property and Fabrication of Silicon-based Free-form Micro-lens Array[J]. Infrared Technology , 2012, 34(1): 44-47. DOI: 10.3969/j.issn.1001-8891.2012.01.009 |
[8] | WANG Fu-guo, YANG Fei, CHEN Bao-gang, LI Yan-wei. Lightweight Structure Design,Analysis and Test of Lager Aperture and Prime Focus Optical System[J]. Infrared Technology , 2011, 33(1): 4-8. DOI: 10.3969/j.issn.1001-8891.2011.01.002 |
[9] | LIU Yun-meng, ZHANG Bao-long. Light-weight Design and Application of Two-dimensional Scan Pointer Mirror in Space Remote Sensor[J]. Infrared Technology , 2007, 29(12): 688-691. DOI: 10.3969/j.issn.1001-8891.2007.12.002 |
[10] | Design and Lightweight Research of Cassegrain Drawtube in Space Remote Instrument[J]. Infrared Technology , 2006, 28(5): 253-256. DOI: 10.3969/j.issn.1001-8891.2006.05.002 |
1. |
张永胜,刘海珂,赫海涛,张亚军. 大视场三维姿态角光学测量系统设计. 计算机测量与控制. 2024(08): 20-26 .
![]() | |
2. |
王江涛,王虎,马占鹏,薛要克,王星艳,连进. 基于受控遗传算法的离轴三反光学系统设计. 光子学报. 2024(12): 75-87 .
![]() | |
3. |
蒋成斌,陈智利,王肖同,张媛,成姗姗. 紧凑式离轴三反光学系统设计. 光电工程. 2023(12): 50-61 .
![]() |