HE Yan, GUO Yu, ZENG Zhu, LIU Zhihui, FU Qiang. Thermal Management Technology of Light, Small, and Compact Airborne Photo-Electric Pod[J]. Infrared Technology , 2023, 45(8): 837-844.
Citation: HE Yan, GUO Yu, ZENG Zhu, LIU Zhihui, FU Qiang. Thermal Management Technology of Light, Small, and Compact Airborne Photo-Electric Pod[J]. Infrared Technology , 2023, 45(8): 837-844.

Thermal Management Technology of Light, Small, and Compact Airborne Photo-Electric Pod

More Information
  • Received Date: November 15, 2022
  • Revised Date: February 27, 2023
  • To meet the development trend of light, small, and compact airborne photoelectric pods and solve the heat dissipation problem of photoelectric pods, a combination of cooling and fan circulation convection heat dissipation was used. The contact heat components with the cabin using a metal structure were employed to establish a heat conduction channel. The internal air was circulated by a fan to strengthen the internal convection and establish a low-thermal-resistance convection heat-transfer channel. Modeling simulation was performed by ICEPAK thermal simulation software, and a high-temperature working test was also conducted. The results show that the maximum temperature rise of the key processors DSP, FPGA, SoC is respectively 29.1℃, 29.2℃, 33.8℃ under static conditions and 5.2℃, 3.5℃, 4.4℃ lower than the case without fans. And the maximum temperature rise is respectively 11.9℃, 9.1℃, 15.5℃ under flight conditions. At the same time, under the action of internal air circulation by the fan, the maximum ambient temperature in the cabin was reduced by approximately 5.5℃. The maximum temperature deviation between test and simulation at the same conditions is 3.1℃. The thermal management method can effectively reduce the temperature increase in the internal environment and devices inside the cabin, satisfy the requirements of pod use with a simple structure, and occupy a small space. Thus, it is suitable for light, small, and compact airborne photo-electric pods.
  • [1]
    方喜波. 光电侦察吊舱对海广域搜索方法[J]. 红外技术, 2021, 43(11): 1055-1060. http://hwjs.nvir.cn/article/id/9db773d6-e53b-4486-a8ca-f32834bc9f13

    FANG Xibo. Searching method of the wide area of optical recon pod for sea targets[J]. Infrared Technology, 2021, 43(11): 1055-1060. http://hwjs.nvir.cn/article/id/9db773d6-e53b-4486-a8ca-f32834bc9f13
    [2]
    李磊, 徐月, 蒋琪, 等. 2018年国外军用无人机装备及技术发展综述[J]. 战术导弹技术, 2019(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD202303001.htm

    LI Lei, XU Yue, JIANG Qi, et al. New development trends of military UAV equipment and technology in the world in 2018[J]. Tactical Missile Technology, 2019(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD202303001.htm
    [3]
    梁卫清, 魏志强, 袁红伟, 等. 小型高性能无人机载光电吊舱的发展现状与方向[J]. 电视技术, 2022, 46(7): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DSSS202207015.htm

    LIANG Weiqing, WEI Zhiqiang, YUAN Hongwei, et al. Development status and direction of small-scale high-performance UAV on-board optoelectronic pod[J]. Video Engineering, 2022, 46(7): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DSSS202207015.htm
    [4]
    吉书鹏. 机载光电载荷装备发展与关键技术[J]. 航空兵器, 2017(6): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201706001.htm

    JI Shupeng. Equipment development of airborne electro-optic payload and its key technologies[J]. Aero Weaponry, 2017(6): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201706001.htm
    [5]
    黄俊, 张正勇, 田省民. 机载对地光电探测设备现状及发展趋势研究[J]. 红外技术, 2018, 40(5): 412-416.

    HUANG Jun, ZHANG Zhengyong, TIAN Shengmin. Current status and development trend of airborne air to ground electro-optical detection equipment[J]. Infrared Technology, 2018, 40(5): 412-416.
    [6]
    谢远成, 欧中红. 电子设备散热技术的发展[J]. 舰船电子工程, 2019, 39(8): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201908005.htm

    XIE Yuanchen, OU Zhonghong. Development of heat dissipation technology for electronic equipment[J]. Ship Electronic Engineering, 2019, 39(8): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201908005.htm
    [7]
    吕永超, 杨双根. 电子设备热分析、热设计及热测试技术综述及最新进展[J]. 电子机械工程, 2007(1): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJX200701001.htm

    LV Yongchao, YANG Shuanggen. A review of thermal analysis, thermal design and thermal test technology and the recent development [J]. Electro-Mechanical Engineering, 2007(1): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJX200701001.htm
    [8]
    鲍桐, 张忠政, 张志同. 一种强迫风冷盘式换热器设计研究[J]. 低温与超导, 2020(6): 84-86, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202006016.htm

    BAO Tong, ZHANG Zhongzheng, ZHANG Zhitong. A design research of forced air heat exchanger with circular structure[J]. Cryogenics & Superconductivity, 2020(6): 84-86, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202006016.htm
    [9]
    关宏山. 吊舱冲压空气环控系统研制[J]. 雷达科学与技术, 2011(4): 383-386. https://www.cnki.com.cn/Article/CJFDTOTAL-LDKJ201104020.htm

    GUAN Hongshan. Development of ram air environment control system for airborne pod[J]. Radar Science and Technology, 2011(4): 383-386. https://www.cnki.com.cn/Article/CJFDTOTAL-LDKJ201104020.htm
    [10]
    国防科学技术工业委员会. 电子设备可靠性热设计手册: GJB/Z27-1992[S]. [1992-07-18].

    Commission of science, technology and industry for national defense. Thermal Design Handbook for Reliability of Electronic Equipment: GJB/Z27-1992 [S]. [1992-07-18].

Catalog

    Article views (221) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return