Citation: | CAO Tianhao, ZHANG Jiyan, LIN Zhengyu, SUN Liting, QIN Teng, SHEN Yangyu. Design of Compact Long-Wave Infrared Zoom Optical System[J]. Infrared Technology , 2025, 47(5): 553-562. |
To meet the demand for compactness in long-wave infrared zoom optical systems, a linear dual-group linkage continuous zoom structure was utilized to simplify the system design. A compact long-wave infrared zoom optical system was developed using an uncooled infrared detector with a 384×288 array and a 25 μm pixel size, incorporating four single-crystal silicon (Si) lenses. The system has a total length of 160 mm, operates in the 8-12 μm wavelength band, offers a zoom range of 100-200 mm, a field of view from 3.42° to 6.80°, and maintains a constant F-number of 1.4. The design incorporates a diffractive optical element to achieve athermalization and eliminate secondary spectrum aberrations. Additionally, a conical surface and an even-order aspherical surface are introduced to balance spherical and chromatic aberrations caused by the long focal length and large aperture. The design results indicate that the system is compact and can achieve high-quality infrared thermal imaging within a temperature range of -40℃ to 60℃. The modulation transfer function (MTF) across the entire field of view exceeds 0.3 at the Nyquist frequency of 20 lp/mm. The zoom cam curve is smooth and free of inflection points, and the tolerance analysis confirms good manufacturability.
[1] |
Park K, Choi J, Kang J. Design and performance verification of a LWIR zoom camera for drones[J]. Curr. Opt. Photon. , 2023, 7: 354-361.
|
[2] |
Doruk Kucukcelebi. Optical design of athermalised dual field of view zoom lens in long wave infrared (8μm-12μm) spectral band using benefits of paraxial optics[C]//SPIE Optical Engineering + Applications, 2016: 99470B.
|
[3] |
王静, 吴越豪, 戴世勋, 等. 硫系玻璃在长波红外无热化连续变焦广角镜头设计中的应用[J]. 红外与激光工程, 2018, 47(3): 165-171.
WANG J, WU Y H, DAI S X, et al. Application of chalcogenide glass in the design of long wave infrared non-thermal continuous zoom wide-angle lens [J]. Infrared and Laser Engineering, 2018, 47(3): 165-171.
|
[4] |
吴海清, 王朋. 小型化大面阵非制冷红外连续变焦光学系统设计[J]. 红外, 2020, 41(2): 1-6. DOI: 10.3969/j.issn.1672-8785.2020.02.001
WU H Q, WANG P. Design of miniaturized large array uncooled infrared continuous zoom optical system [J]. Infrared, 2020, 41(2) : 1-6. DOI: 10.3969/j.issn.1672-8785.2020.02.001
|
[5] |
吴海清, 谈大伟. 防辐射长波红外连续变焦光学系统设计[J]. 红外, 2023, 44(2): 1-7. DOI: 10.3969/j.issn.1672-8785.2023.02.001
WU Haiqing, TAN Dawei. Design of radiation-proof long-wave infrared continuous zoom optical system [J]. Infrared, 2023, 44(2): 1-7. DOI: 10.3969/j.issn.1672-8785.2023.02.001
|
[6] |
唐玉凤, 毛珊, 宋逸辰, 等. 非制冷长波红外连续变焦光学系统的一种无热化设计[J]. 光学学报, 2024, 44(7): 0722002.
TANG Y F, MAO S, SONG Y C, et al. Athermalization design of uncooled long waveband infrared continuous zoom optical system[J]. Acta Optica Sinica, 2024, 44(7): 0722002.
|
[7] |
姚多舜, 王楠茜, 康文莉. 线性双组联动型连续变焦光学系统设计[J]. 应用光学, 2015, 36(1): 1-8. DOI: 10.5768/JAO201536.0101001.
YAO D S, WANG N Q, KANG W L. Method of designing linearization double-linkage continuous zoom lens[J]. Journal of Applied Optics, 2015, 36(1): 1-8. DOI: 10.5768 / JAO201536.0101001
|
[8] |
张继艳, 林海峰, 黄章超. 基于硫系玻璃的紧凑式大相对孔径长波红外光学系统无热化设计[J]. 应用光学, 2021, 42(5): 790-795.
ZHANG J Y, LIN H F, HUANG Z C. Non-thermal design of compact long wave infrared optical system with large relative aperture based on chalcogenide glass [J]. Journal of Applied Optics, 2021, 42(5): 790-795.
|
[9] |
周正平, 陈恒, 纪辉, 等. 折衍混合轻量化长波红外消热差光学系统设计[J]. 激光与光电子学进展, 2022, 59(10): 392-397.
ZHOU Z P, CHEN H, JI H, et al. Design of hybrid lightweight long-wave infrared thermal suppression optical system[J]. Laser and Optoelectronics Progress, 2022, 59(10): 392-397.
|
[10] |
洪新华, 杨建峰, 陈立武, 等. 衍/折射光学元件消二级光谱的设计[J]. 强激光与粒子束, 2004(4): 421-424.
HONG X H, YANG J F, CHEN L W, et al. Design of secondary elimination spectrum for diffractive/refraction optics[J]. High Power Laser and Particle Beams, 2004(4): 421-424.
|
[11] |
Arnold Daniels. Field Guide to Infrared Systems, Detectors, and FPAs, Third Edition[M]. Bellingham: SPIE, 2018.
|
[12] |
Bhan R K, Saxena R S, Jalwani C R, et al. Uncooled infrared microbolometer arrays and their characterization techniques[J]. Defence Science Journal, 2009, 59(6): 580-589. DOI: 10.14429/dsj.59.1562
|
[13] |
Ok C M, Park S C. Design and analysis of a 10× optical zoom system for an LWIR camera[J]. Journal of the Optical Society of Korea, 2014, 18(5): 574-581. DOI: 10.3807/JOSK.2014.18.5.574
|
[14] |
Leonardo. How to assess thermal camera range capability for site design purposes[R]. MR: DRS, 2014.
|