LUO Yanan, CHEN Yixin, GUO Guanzhu, LI Zhaocun, XU Cong. Independent Design and Temperature Control Performance Experiment of the CdZnTe Crystal Growth Furnace[J]. Infrared Technology , 2022, 44(1): 73-78.
Citation: LUO Yanan, CHEN Yixin, GUO Guanzhu, LI Zhaocun, XU Cong. Independent Design and Temperature Control Performance Experiment of the CdZnTe Crystal Growth Furnace[J]. Infrared Technology , 2022, 44(1): 73-78.

Independent Design and Temperature Control Performance Experiment of the CdZnTe Crystal Growth Furnace

More Information
  • Received Date: May 27, 2021
  • Revised Date: December 28, 2021
  • In response to the demand for the growth of 4-inch diameter single-crystal CdZnTe materials and based on the results obtained from studying the growth of foreign CdZnTe crystal materials, a CdZnTe crystal growth furnace based on the mobile heating method was independently designed. The heating unit of the furnace body comprises four specifications with six temperature controlled sections, which are controlled by an industrial computer that controls the servo motor to drive the ball screw linear guide to achieve lifting. The inner cavity of the furnace was fitted with a heating tube comprising corundum ceramic tubes and high-temperature metal heat pipes using high-precision platinum-rhodium-platinum thermocouples, Eurofins, transformers, and thyristor control heating units. This furnace is based on a fuzzy + PID control algorithm with a strategy to adjust and control the temperature distribution of the heating furnace. This furnace was used to perform stability and control performance experiments during temperature heating. Experimental results showed that the heating temperature of the inner cavity of the furnace was continuously controlled for 200 h, temperature fluctuation at the same position was ±0.005℃, and heating temperature deviation was ≤ ±0.1℃. The lengths of the upper and lower constant-temperature zones of the furnace cavity were 400 and 240 mm, respectively. The length of the temperature gradient zone in the middle of the furnace cavity was approximately 136 mm. The length of the constant-temperature zone in the lower part of the furnace cavity was 240 mm. At a heating temperature of approximately 1098℃, the temperature gradient was 0.92℃⋅mm−1. Experimental results showed that this furnace meets the independent design and temperature control performance requirements for a CdZnTe crystal growth furnace.
  • [1]
    PETER Capper, JAMES Garland. Mercury Cadmium Telluride (Growth, Properties and Applications)[M]. Wiley Series in Materials for Electronic & Optoelectronic Applications, 2010.
    [2]
    沈杰, 陈建中, 马可军, 等. 侧冷焠火固态再结晶法制备的Hg1-xCdxTe单晶的质量[J]. 红外研究, 1986, 5(5): A2.

    SHEN Jie, CHEN Jianzhong, MA Kejun, et al. The quality of Hg1-xCdxTe single crystal prepared by side cooling quenching solid state recrystallization method[J]. Infrared Research, 1986, 5(5): A2.
    [3]
    王忆锋, 姜军. 碲锌镉晶体生长炉温度场的一阶仿真[J]. 红外, 2010, 31(1): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201001014.htm

    WANG Yifeng, JIANG Jun. First-order simulation of temperature field of CdZnTe crystal growth furnace[J]. Infrared, 2010, 31(1): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201001014.htm
    [4]
    李万万, 桑文斌, 闵嘉华, 等. 垂直布里奇曼法生长CdZnTe晶体时坩埚下降速度的优化研究[J]. 无机材料学报, 2004, 19(4): 723-732. DOI: 10.3321/j.issn:1000-324X.2004.04.003

    LI Wanwan, SANG Wenbin, MIN Jiahua, et al. Optimization of Crucible Descending Rate During the Crystal Growth of CdZnTe by a Vertical Bridgman Method[J]. Journal of Inorganic Materials, 2004, 19(4): 723-732. DOI: 10.3321/j.issn:1000-324X.2004.04.003
    [5]
    Broder J D, Wolff G A. A new method of GaP growth[J]. Journal of the Electrochemical Society, 1963, 110(11): 1150-1153. DOI: 10.1149/1.2425610
    [6]
    杨帆, 王涛, 周伯儒, 等. 室温核辐射探测器用碲锌镉晶体生长研究进展[J]. 人工晶体学报, 2020, 49(4): 561-569. DOI: 10.3969/j.issn.1000-985X.2020.04.001

    YANG Fan, WANG Tao, ZHOU Boru, et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications[J]. Journals of Synthetic Crystals, 2020, 49(4): 561-569. DOI: 10.3969/j.issn.1000-985X.2020.04.001
    [7]
    Mokri A E, Triboulet R, Lusson A, el al. Growth of large, high purity, low cost, uniform CdZnTe crystals by the "Cold Travelling Heater Method"[J]. Journal of Crystal Growth, 1994, 138(1): 168-174.
    [8]
    Toshiaki Asahi, Akio Koyama, Yoshimitsu Taniguchi, et al. Growth and characterization of large diameter CdTe crystals[J]. The Journal Association for Crystal Growth, 1995, 22(1): 3-16.
    [9]
    Asahi T, Oda O, Taniguchi Y, et al. Growth and Characterization of 100 mm Diameter CdZnTe Single Crystals By the Vertical Gradient Freezing Method[J]. Journal of Crystal Growth, 1996, 161: 20-27. DOI: 10.1016/0022-0248(95)00606-0
    [10]
    Funaki M, Ozaki T, Satoh K, et al. Growth and characterization of CdTe single crystals for radiation detectors[J]. Nuclear Instruments and Mechods in Physics Research A, 1999, 436: 120-126. DOI: 10.1016/S0168-9002(99)00607-5
    [11]
    Shiraki H, Funaki M, Ando Y, et al. THM Growth and characterization of 100mm Diameter CdTe Single Crystals[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1717-1723. DOI: 10.1109/TNS.2009.2016843
    [12]
    CHEN H, Awadalla S A, Iniewski K, et al. Characterization of large cadmium zinc telluride crystals grown by traveling heater method[J]. Journal of Applied Physics, 2008, 103(1): 014903. DOI: 10.1063/1.2828170
    [13]
    Prokesch M, Soldner S A, Sundaram A, et al. CdZnTe Detectors Operating at X-ray Fluxes of 100 million Photons/(mm2⋅s)[J]. IEEE Transactions on Nuclear Science, 2016, 63: 1854. DOI: 10.1109/TNS.2016.2556318
    [14]
    介万奇. Bridgman法晶体生长技术的研究进展[J]. 人工晶体学报, 2012, 41(s): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT2012S1008.htm

    JIE Wanqi. Progress of Bridgman crystal growth technology[J]. Journals of Synthetic Crystals, 2012, 49(s): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT2012S1008.htm
    [15]
    马雁冰, 刘滔, 邹鹏程, 等. 垂直Bridgman法晶体生长碲锌镉晶体的数值模拟分析[J]. 红外技术, 2009, 31(4): 240-245. DOI: 10.3969/j.issn.1001-8891.2009.04.014

    MA Yanbing, LIU Tao, ZOU Pengcheng, at al. Numerical simulation and analysis of CZT crystal growth by the VB method[J]. Infrared Technology, 2009, 31(4): 240-245. DOI: 10.3969/j.issn.1001-8891.2009.04.014
    [16]
    李照存. 一种可有效防止炉内污染的提拉法晶体生长炉[P]. CN106757311A. 2017-05.

    LI Zhaocun. A Pulling Method Crystal Growth Furnace Capable of Effectively Preventing Pollution in the Furnace[P]. CN106757311A. 2017-05.
    [17]
    Asahi T, Oda O, Taniguchi Y, Koyama A. Growth and Characterization of 100 mm Diameter CdZnTe Single Crystals by the Vertical Gradient Freezing Method[J]. Journal of Crystal Growth, 1996, 161: 20-27. DOI: 10.1016/0022-0248(95)00606-0
    [18]
    OUYANG H, WEI S. Numerical simulation of CdTe vertical Bridgman growth[J]. Journal of Crystal Growth, 1997, 173(3): 352-366.
    [19]
    Komar V, Gektin A, Nalinaiko D, et al. Characterization of CdZnTe crystals grown by HPB method[J]. Nuclear Instruments & Methods in Physics Research, 2001, 458: 113-122.
    [20]
    杨世铭, 陶文铨. 传热学[M]. 第四版, 北京: 高等教育出版社, 2006.

    YANG Shiming, TAO Wenquan. Heat Transfer[M]. Fourth Edition, Beijing: High Education Press, 2006.
  • Related Articles

    [1]CHEN Xu, WU Wei, PENG Dongliang, GU Yu. Infrared-PV: an Infrared Target Detection Dataset for Surveillance Application[J]. Infrared Technology , 2023, 45(12): 1304-1313.
    [2]LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.
    [3]ZHANG Lu, ZHANG Lei, FU Zhikai, TIAN Ya. Low Temperature Evaluation Method of Infrared Detector Integrated with Optical System[J]. Infrared Technology , 2021, 43(12): 1188-1192.
    [4]ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology , 2021, 43(8): 766-772.
    [5]ZHU Shuangshuang, ZOU Peng, LU Meina, ZHANG Aiwen, LIU Zhenhai, QIU Zhenwei, HONG Jin. Temperature Control System Design of Infrared Detector Based on Bang-Bang and PID Control[J]. Infrared Technology , 2017, 39(11): 990-995.
    [6]High Performance InP/InGaAs Wide Spectrum Infrared Detectors[J]. Infrared Technology , 2016, 38(1): 1-5.
    [7]YONG Chao-Liang, DUAN Dong, XU Chun, CHEN Fan-Sheng. The Study on the Dark Current of the Infrared Detector Measuring Method[J]. Infrared Technology , 2012, 34(4): 196-199. DOI: 10.3969/j.issn.1001-8891.2012.04.003
    [8]Performance HgCdTe Infrared Detector at Different Temperatures[J]. Infrared Technology , 2012, 34(1): 1-3,15. DOI: 10.3969/j.issn.1001-8891.2012.01.001
    [9]ZHANG Tong, CHEN Xiao-wen, LIU Yin-nian, WANG Jian-yu. Design and Implement of Temperature Controlling System of Spaceborne Infrared Detector[J]. Infrared Technology , 2005, 27(2): 167-170. DOI: 10.3969/j.issn.1001-8891.2005.02.017
    [10]An Inquiry into the Performances of the Far Infrared Magnetic Fibers[J]. Infrared Technology , 2002, 24(6): 86-89. DOI: 10.3969/j.issn.1001-8891.2002.06.020
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (285) PDF downloads (48) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return