DING Jian, GAO Qingwei, LU Yixiang, SUN Dong. Infrared and Visible Image Fusion Algorithm Based on the Decomposition of Robust Principal Component Analysis and Latent Low Rank Representation[J]. Infrared Technology , 2022, 44(1): 1-8.
Citation: DING Jian, GAO Qingwei, LU Yixiang, SUN Dong. Infrared and Visible Image Fusion Algorithm Based on the Decomposition of Robust Principal Component Analysis and Latent Low Rank Representation[J]. Infrared Technology , 2022, 44(1): 1-8.

Infrared and Visible Image Fusion Algorithm Based on the Decomposition of Robust Principal Component Analysis and Latent Low Rank Representation

More Information
  • Received Date: October 12, 2020
  • Revised Date: March 29, 2021
  • The fusion of infrared and visible images plays an important role in video surveillance, target tracking, etc. To obtain better fusion results for images, this study proposes a novel method combining deep learning and image decomposition based on a robust low-rank representation. First, robust principal component analysis is used to denoise the training set images. Next, rapid latent low rank representation is used to learn a sparse matrix to extract salient features and decompose the source images into low-frequency and high-frequency images. The low-frequency components are then fused using an adaptive weighting strategy, and the high-frequency components are fused by a VGG-19 network. Finally, the new low-frequency image is superimposed with the new high-frequency image to obtain a fused image. Experimental results demonstrate that this method has advantages in terms of both the subjective and objective evaluation of image fusion.
  • [1]
    DENG Y, LI C, ZHANG Z, et al. Image fusion method for infrared and visible light images based on SWT and regional gradient[C]//2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), 2017: 976-979, doi: 10.1109/ITOEC.2017.8122499.
    [2]
    BEN H A, Yun H, Hamid K, et al. A multiscale approach to pixel-level image fusion[J]. Integrated Computer Aided Engineering, 2005, 12(2): 135-146. DOI: 10.3233/ICA-2005-12201
    [3]
    Goshtasby A A, Nikolov S. Image fusion: advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114-118. DOI: 10.1016/j.inffus.2006.04.001
    [4]
    LUO X Q, LI X Y, WANG P F, et al. Infrared and visible image fusion based on NSCT and stacked sparse autoencoders[J]. Multimedia Tools and Applications, 2018, 77(17): 22407-22431. DOI: 10.1007/s11042-018-5985-6
    [5]
    MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178.
    [6]
    YANG J, Wright J, HUANG T S, et al. Image super-resolution via sparse representation[C]//IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873, Doi: 10.1109/TIP.2010.2050625.
    [7]
    王文卿, 高钰迪, 刘涵, 等. 基于低秩稀疏表示的红外与可见光图像序列融合方法[J]. 西安理工大学学报, 2019, 35(3): 8. https://www.cnki.com.cn/Article/CJFDTOTAL-XALD201903003.htm

    WANG W Q, GAO Y D, LIU H, et al. Fusion method of infrared and visible image sequences based on low rank sparse representation[J]. Journal of Xi'an University of technology, 2019, 35(3): 8. https://www.cnki.com.cn/Article/CJFDTOTAL-XALD201903003.htm
    [8]
    康家银, 陆武, 张文娟. 融合NSST和稀疏表示的PET和MRI图像融合[J]. 小型微型计算机系统, 2019(12): 2506-2511. DOI: 10.3969/j.issn.1000-1220.2019.12.006

    KANG J Y, LU W, ZHANG W J. Pet and MRI image fusion based on NSST and sparse representation[J]. Minicomputer System, 2019(12): 2506-2511. DOI: 10.3969/j.issn.1000-1220.2019.12.006
    [9]
    王建, 吴锡生. 基于改进的稀疏表示和PCNN的图像融合算法研究[J]. 智能系统学报, 2019, 14(5): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201905011.htm

    WANG J, WU X S. Image fusion algorithm based on improved sparse representation and PCNN[J]. Journal of Intelligent Systems, 2019, 14(5): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201905011.htm
    [10]
    LI H, WU X, Kittler J. MD LatLRR: A Novel Decomposition Method for Infrared and Visible Image Fusion[C]//IEEE Transactions on Image Processing, 2020, 29: 4733-4746. Doi: 10.1109/TIP.2020.2975984.
    [11]
    YU L, XUN C, Ward R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016(99): 1-1.
    [12]
    Prabhakar K R, Srikar V S, Babu R V. Deep fuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]// IEEE International Conference on Computer Vision, IEEE Computer Society, 2017: 4724-4732.
    [13]
    LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): S0219691318500182.
    [14]
    WANG X Z, YIN J F, ZHANG K, et al. Infrared weak-small targets fusion based on latent low-rank representation and DWT[J]. IEEE Access, 2019, 7: 112681-112692. Doi: 10.1109/ACCESS.2019.2934523.
    [15]
    LIU G, YAN S. Latent Low-rank representation for subspace segmentation and feature extraction[C]//International Conference on Computer Vision, 2011: 1615-1622. Doi: 10.1109/ICCV.2011.6126422.
    [16]
    WANG Y M, Morariu V I, Davis L S. Unsupervised feature extraction inspired by latent low-rank representation[C]//IEEE Winter Conference on Applications of Computer Vision, 2015: 542-549. Doi: 10.1109/WACV.2015.78.
    [17]
    Wright J, MA Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044. DOI: 10.1109/JPROC.2010.2044470
    [18]
    ZHANG H, LIN Z, ZHANG C, et al. Robust latent low rank representation for subspace clustering[J]. Neurocomputing, 2014, 145(5): 369-373.
    [19]
    谢艳新. 基于LatLRR和PCNN的红外与可见光融合算法[J]. 液晶与显示, 2019, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201904014.htm

    XIE Y X. Infrared and visible light fusion algorithm based on latLRR and PCNN[J]. Liquid Crystal and Display, 2019, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201904014.htm
    [20]
    LI H, WU X J, Kittler J. Infrared and visible image fusion using a deep learning framework[C]//24th International Conference on Pattern Recognition (ICPR), 2018: 2705-2710. Doi: 10.1109/ICPR.2018.8546006.
    [21]
    WANG Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality[C]//The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, 2: 1398-140. Doi: 10.1109/ACSSC.2003.1292216.
    [22]
    Aslantas V L, Bendes E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. AEU - International Journal of Electronics and Communications, 2015, 69(12): 1890-1896. DOI: 10.1016/j.aeue.2015.09.004
    [23]
    lantas V, Bendes E. A new image quality metric for image fusion: The sum of the correlations of differences[J]. AEUE - International Journal of Electronics and Communications, 2015, 69(12): 1890-1896. DOI: 10.1016/j.aeue.2015.09.004
    [24]
    Haghighat M, Razian M A. Fast-FMI: Non-reference image fusion metric[C]//IEEE International Conference on Application of Information & Communication Technologies, 2014: 1-3.
    [25]
    LIU Y, CHEN X, Ward R, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886. Doi: 10.1109/LSP.2016.2618776.
    [26]
    Kumar B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204. DOI: 10.1007/s11760-013-0556-9
    [27]
    ZHANG Y, ZHANG L, BAI X, et al. Infrared and visual image fusion through infrared feature extraction and visual information preservation[J]. Infrared Physics & Technology, 2017, 83: 227-237.
  • Related Articles

    [1]XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology , 2024, 46(9): 1025-1034.
    [2]WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924.
    [3]LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713.
    [4]SUN Bin, ZHUGE Wuwei, GAO Yunxiang, WANG Zixuan. Infrared and Visible Image Fusion Based on Latent Low-Rank Representation[J]. Infrared Technology , 2022, 44(8): 853-862.
    [5]MEI Jiacheng, WANG Rui, YE Hanmin. Compressive Fusion and Target Detection Based on Sparse Representation[J]. Infrared Technology , 2016, 38(3): 218-224.
    [6]SONG Bin, WU Le-hua, TANG Xiao-jie, WEN Yu-qiang, MOU Yu-fei. An Image Fusion Algorithm Based on DCT Sparse Representation and Dual-PCNN[J]. Infrared Technology , 2015, (4): 283-288.
    [7]WANG Zhi-she, YANG Feng-bao, PENG Zhi-hao. Multi-source Heterogeneous Image Fusion Based on NSST and Sparse Presentation[J]. Infrared Technology , 2015, (3): 210-217.
    [8]SUN Jun-ding, ZHAO Hui-hui. Sparse Representation and Applications in Image Processing[J]. Infrared Technology , 2014, (7): 533-537.
    [9]GUAN Xue-wei, LIU Xian-zhi, LUO Zhen-bao. Object Tracking Algorithm Based on Region Covariance Matrix[J]. Infrared Technology , 2009, 31(2): 99-102. DOI: 10.3969/j.issn.1001-8891.2009.02.009
    [10]ZHANG Su-wen, CHEN Juan. A Image Fusion Method Based on Non-negative Matrix Factorization and Infrared Feature[J]. Infrared Technology , 2008, 30(8): 446-449. DOI: 10.3969/j.issn.1001-8891.2008.08.004
  • Cited by

    Periodical cited type(2)

    1. 王宁. 大跨度钢结构横纵梁拼装焊接热影响区异常检测方法. 安阳工学院学报. 2024(06): 97-102 .
    2. 陈海峰,庄金雷,朱标,李培华,杨潘,刘丙友,樊璇. 基于改进Canny算子的图像边缘融合方法. 新乡学院学报. 2022(12): 23-27 .

    Other cited types(4)

Catalog

    Article views (189) PDF downloads (67) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return