YAN Yunbin, CUI Bolun, YANG Tingting, LI Xin, SHI Zhicheng, DUAN Pengfei, SONG Meiping, LIAN Minlong. Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform[J]. Infrared Technology , 2023, 45(6): 582-591.
Citation: YAN Yunbin, CUI Bolun, YANG Tingting, LI Xin, SHI Zhicheng, DUAN Pengfei, SONG Meiping, LIAN Minlong. Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform[J]. Infrared Technology , 2023, 45(6): 582-591.

Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform

More Information
  • Received Date: February 21, 2023
  • Revised Date: April 27, 2023
  • To solve the problems of large volume and low detection efficiency of UAV hyperspectral imagers, a light and small multi-modal high-resolution hyperspectral imager is proposed. This study primarily introduces the optical system design, data acquisition, and real-time processing modules of the hyperspectral imager. The proposed imager satisfies the detection mode requirements in different fields, such as spectral characteristic analysis and target detection, by switching the scanning mode. A low distortion, high throughput, and compact spectroscopic optical system design is adopted to meet the weight and detection accuracy requirements of the UAV platform for the spectral imager. The product was processed according to the design requirements and the performance was tested simultaneously. Among these, the MTF reached 0.19 and spectral resolution was 3.5–5.4 nm. The ability of the system to detect real-time targets was verified through detection of impurities in various pipelines. The implementation results showed that the system achieved high-precision spectral anomaly target detection in 2048 pixel×2048 pixel scenes per second with a detection accuracy greater than 87%.
  • [1]
    Cocks T, Jenssen R, Stewart A, et al. The HyMap airborne hyperspectral sensor: the system, calibration and performance[C]//Proc. 1st EARSeL Workshop on Imaging Spectroscopy, 1998: 37-42.
    [2]
    Babey S K, Anger C D. Compact airborne spectrographic imager (CASI)[C]//Imaging Spectrometry of the Terrestrial Environment, 1930, DOI: 10.1117/12.157052.
    [3]
    Ulbrich G J, Meynart R, Nieke J. APEX-airborne prism experiment: the realization phase of an airborne hyperspectral imager[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5570: 453-459.
    [4]
    Hamlin L, Green R O, Mouroulis P, et al. Imaging spectrometer science measurements for Terrestrial Ecology: AVIRIS and new developments[C]//Aerospace Conference. IEEE, 2011: 1-7.
    [5]
    Pullanagari R R, Kereszturi G, Yule I J. Quantification of dead vegetation fraction in mixed pastures using AisaFENIX imaging spectroscopy data[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 58: 26-35.
    [6]
    WANG Y. Wide-field-of-view visible and near infrared pushbroom airborne hyperspectral imager (Conference Presentation)[C]// Infrared Technology and Applications XLIV, 2018, 10624: 15-19.
    [7]
    Horstrand P, Guerra R, Rodriguez A, et al. A UAV platform based on a hyperspectral sensor for image capturing and on-board processing[J]. IEEE Access, 2019, 7: 66919-66938. DOI: 10.1109/ACCESS.2019.2913957.
    [8]
    QIN Jianwei, CHAO Kuanglin, Moon S Kim, et al. Hyperspectral and multispectral imaging for evaluating food safety and quality[J]. Journal of Food Engineering, 2013, 118(2): 157-171. DOI: 10.1016/j.jfoodeng.2013.04.001
    [9]
    Barreto M, Johansen K, Angel Y, et al. Radiometric assessment of a UAV-Based push-broom hyperspectral camera[J]. Sensors, 2019, 19(21): 4699. DOI: 10.3390/s19214699
    [10]
    Malenovsky Z, Lucieer A, Robinson S A, et al. Ground-based imaging spectroscopy data for estimation of Antarctic moss relative vigour from remotely sensed chlorophyll content and leaf density at ASPA[J]. Environmental Science, 2015, DOI: 10.4225/15/555C1DB80CB70.
    [11]
    Kanning M, I Kühling, Trautz D, et al. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction[J]. Remote Sensing, 2018, 10(12): 2000. DOI: 10.3390/rs10122000
    [12]
    ZHU C, Kanaya Y, Tsuchiya M, et al. Optimization of a hyperspectral imaging system for rapid detection of microplastics down to 100 m[J]. Methods X, 2021, 8: 101175.
    [13]
    Lenhard, Karim, Schwarzmaier, et al. Independent laboratory character-rization of NEO HySpex imaging spectrometers VNIR-1600 and SWIR-320m-e[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1828-1841. DOI: 10.1109/TGRS.2014.2349737
    [14]
    Blaaberg S, T Løke, Baarstad I, et al. A next generation VNIR-SWIR hyperspectral camera system: HySpex ODIN-1024[C]//Electro-optical & Infrared Systems: Technology & Applications XI. International Society for Optics and Photonics, 2014, DOI: 10.1117/12.2067497.
    [15]
    Telmo A, Hruka Joná, Pádua Luís, et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry[J]. Remote Sensing, 2017, 9(11): 1110. DOI: 10.3390/rs9111110
    [16]
    Nex F, Armenakis C, Cramer M, et al. UAV in the advent of the twenties: Where we stand and what is next[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 215-242. DOI: 10.1016/j.isprsjprs.2021.12.006
    [17]
    刘银年. "高分五号"卫星可见短波红外高光谱相机的研制[J]. 航天返回与遥感, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htm

    LIU Y N. Visible-shortwave infrared hyperspectral imager of GF-5 satellite[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htm
    [18]
    Stefano P, Angelo P, Simone P, et al. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring[C]//Geoscience & Remote Sensing Symposium. IEEE, 2014: 4558-4561.
    [19]
    Iwasaki A, Tanii J, Kashimura O, et al. Prelaunch status of hyperspectral imager suite (Hisui)[C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 5887-5890.
    [20]
    郭俊先. 基于高光谱成像技术的棉花杂质检测方法的研究[D]. 杭州: 浙江大学, 2011.

    GUO J X. Study on Detection of Cotton Trashes by Hyperspectral Imaging[D]. Hangzhou: Zhejiang University, 2011.
    [21]
    汪瑶. 用于工业分拣的高光谱智能相机研究[D]. 合肥: 中国科学技术大学, 2012.

    WANG Y. Research on Hyperspectral Smart Camera for Industrial Sorting[D]. Heifei: University of Science and Technology of China, 2012.
    [22]
    Faqeerzada M A, Lohumi S, Kim G, et al. Hyperspectral shortwave infrared image analysis for detection of adulterants in almond powder with one-class classification method[J]. Sensors, 2020, 20(20): 5855. DOI: 10.3390/s20205855
    [23]
    YU F H, BAI J C, JIN Z Y, et al. Research on precise fertilization method of rice tillering stage based on UAV hyperspectral remote sensing prescription map[J]. Agronomy, 2022, 12(11): 2893. DOI: 10.3390/agronomy12112893
    [24]
    LIU X M, WANG H C, CAO Y W, et al. Comprehensive growth index monitoring of desert steppe grassland vegetation based on UAV hyperspectral[J]. Front Plant Sci. , 2023, 13: 1050999. DOI: 10.3389/fpls.2022.1050999.
    [25]
    Resonon Inc. Hyperspectral Imaging Solutions[EB/OL]. [2023-06-12]. https://resonon.com.
    [26]
    李岩, 马越. 扫描线校正器校正量的实验室测试方法[J]. 航天返回与遥感, 2014, 35(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201402009.htm

    LI Y, MA Y. The laboratory scan line corrector test method[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201402009.htm
    [27]
    ZENG Y, HAO D, Huete A, et al. Optical vegetation indices for monitoring terrestrial ecosystems globally[J]. Nature Reviews Earth & Environment, 2022(3): 477-493.
    [28]
    WANG Y, WANG L, YU C, et al. Constrained-target band selection for multiple-target detection[J]. IEEE transactions on geoscience and remote sensing: a publication of the IEEE Geoscience and Remote Sensing Society, 2019: 6079-6103, DOI: 10.1109/TGRS.2019.2904264.
    [29]
    Zabalza J, QING C, YUEN P, et al. Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging[J]. Journal of the Franklin Institute, 2018, 355(4): 1733-1751. DOI: 10.1016/j.jfranklin.2017.05.020
    [30]
    Berk A, Anderson G P, Acharya P K, et al. MODTRAN (TM) 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5806: 662-667.
  • Related Articles

    [1]FENG Hongwei, LIU Yuanyuan, WEN Ziteng, TAN Yong. Recognition Algorithm for an Infrared Flame Detector Based on an Improved Takagi-Sugeno Fuzzy Radial Basis Function Neural Network[J]. Infrared Technology , 2021, 43(1): 37-43.
    [2]HAO Zhenghui, ZHANG Xuesong, WANG Gao, DENG Fangfang, WEI Xuan, YUAN Dongfang. Auto Focusing Evaluation Function Based on Edge Contour Extraction[J]. Infrared Technology , 2018, 40(2): 170-175.
    [3]PAN Xuejuan, ZHU Youpan, PAN Chao, XIA Likun, ZENG Bangze, LUO Lin, ZHAO Deli, LI Zemin. The Influence of Energy Fluctuation of Image on Auto Focus Sharpness Evaluation Function[J]. Infrared Technology , 2016, 38(12): 1032-1037.
    [4]ZHAO Xiaoli, ZHOU Pucheng, XUE Mogen. A Kind of Infrared Image Segment Method Using Improved Chan-Vese Model[J]. Infrared Technology , 2016, 38(9): 774-778.
    [5]GUO Jingbin, FENG Huajie, WANG Long, PENG Qinjian, LI Xingfei. Design of Focusing Window Based on Energy Function of Gradient[J]. Infrared Technology , 2016, 38(3): 197-202.
    [6]YU Hao, LIU Bing-qi, YING Jia-ju, HU Wen-gang. One-Dimension Image Edge Detection Method Based on Sigmoidal Function Fitting[J]. Infrared Technology , 2014, (10): 816-819.
    [7]LIU En-fan, YANG Jiu-cheng, SHI Wen-jun, XU Guo-qiang. An Infrared Image Segmentation Approach based on Improved Chan-Vese Model[J]. Infrared Technology , 2011, 33(9): 545-551. DOI: 10.3969/j.issn.1001-8891.2011.09.013
    [8]WEI Tong-lei, ZENG Qing-ping, ZHOU Yan, BAI Bin. A Method for Radial Moving Small Targets Detecting[J]. Infrared Technology , 2007, 29(12): 712-715. DOI: 10.3969/j.issn.1001-8891.2007.12.008
    [9]CAO Zhan-hui, LI Yan-jun, ZHANG Ke, WU Pan-long. A Novel Linear Edge Extraction Method Based on Gaussian Function[J]. Infrared Technology , 2006, 28(4): 207-209. DOI: 10.3969/j.issn.1001-8891.2006.04.006
    [10]YU Rui-xing, LI Yan-jun, ZHANG Ke. Infrared Image Edge Detection Using Improved Bubble Function[J]. Infrared Technology , 2006, 28(1): 36-38. DOI: 10.3969/j.issn.1001-8891.2006.01.009
  • Cited by

    Periodical cited type(1)

    1. 肖沁,李正周,刘海毅. 基于场景自适应方向引导滤波的红外成像非均匀性校正方法. 光子学报. 2024(11): 253-265 .

    Other cited types(2)

Catalog

    Article views (177) PDF downloads (54) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return