XIAO Tong, TIAN Changhui, WANG Jun, MENG Zhen, FAN Qi, GAO Zhiqiang, XIE Xiaowei, TIAN Xiaoxia. Chiral Metasurface Designed for the Asymmetric Transmission of the Mid-infrared Band[J]. Infrared Technology , 2021, 43(3): 272-278.
Citation: XIAO Tong, TIAN Changhui, WANG Jun, MENG Zhen, FAN Qi, GAO Zhiqiang, XIE Xiaowei, TIAN Xiaoxia. Chiral Metasurface Designed for the Asymmetric Transmission of the Mid-infrared Band[J]. Infrared Technology , 2021, 43(3): 272-278.

Chiral Metasurface Designed for the Asymmetric Transmission of the Mid-infrared Band

More Information
  • Received Date: July 07, 2020
  • Revised Date: July 27, 2020
  • To study the asymmetric transmission characteristics of the chiral metasurface in the mid-infrared band, a chiral metasurface unit based on an L-shaped structure isdesigned.A simulation analysis using CST electromagnetic software reveals that the asymmetric transmission parameter is greater than 0.8 in the range of 68.92-88.68 THz and reaches the extreme value of 0.88 at 73.25 THz. It can be observedthat the structure exhibits good performance in terms of asymmetric transmission in the mid-infrared band.The polarization selective reflection and cross-polarization transmission mechanism of the chiral metasurface are clarified by analyzing the surface current distribution and phase distribution of the transmission field.The relationship between the chiral strength of the unit structure and the asymmetric transmission characteristics is also discussed.The influence of the thickness of the dielectric and metal layers and the incident angle of the electromagnetic wave on the asymmetric transmission characteristics is examined.
  • [1]
    牛继勇, 李范鸣. 空间目标红外偏振特性分析[J]. 红外技术, 2015, 37(3): 200-203. http://hwjs.nvir.cn/article/id/hwjs201503006

    NIU Jiyong, LI Fanming. Analysis of infrared polarization characteristics of space target[J]. Infrared Technology, 2015, 37(3): 200-203. http://hwjs.nvir.cn/article/id/hwjs201503006
    [2]
    金柯, 刘永强, 韩俊, 等. 基于超材料的中波红外宽带偏振转换研究[J]. 物理学报, 2017, 66(13): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201713010.htm

    JIN Ke, LIU Yongqiang, HAN Jun, et al. Broadband polarization conversion in mid-wave infrared based on metamaterials[J]. Acta PhysicaSinica, 2017, 66(13): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201713010.htm
    [3]
    余福源. 手性和各向异性的超材料的偏振特性及应用研究[D]. 合肥: 合肥工业大学, 2018.

    YU Fuyuan. Polarization properties and applications of chiral and anisotropic metamaterials[D]. Hefei: Hefei University of Technology, 2018.
    [4]
    黄慈. 人工手征特异介质的电磁性质研究[D]. 南京: 南京大学, 2012.

    HUANG Ci. Research on Electromagnetic Properties of Artificial Chiral Specific Media[D]. Nanjing: Nanjing University, 2012.
    [5]
    张雅雯, 亓丽梅, 刘畅, 等. 超材料非对称传输器件研究[J]. 量子电子学报, 2018, 35(4): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201804001.htm

    ZHANG Yawen, QI Limei, LIU Chang, et al. Research on Metamaterial Asymmetric Transmission Device[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201804001.htm
    [6]
    LI Z, Mutlu M, Ozbay E. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission[J]. Journal of Optics, 2013, 15(2): 023001-023001. DOI: 10.1088/2040-8978/15/2/023001
    [7]
    董建峰, 徐超, 徐键. 平面手征超常介质研究进展[J]. 材料导报, 2009, 23(1): 84-89. DOI: 10.3321/j.issn:1005-023X.2009.01.020

    DONG Jianfeng, XU Chao, XU Jian. Research Progress of Planar Chiral Metamaterials[J]. Materials Review, 2009, 23(1): 84-89. DOI: 10.3321/j.issn:1005-023X.2009.01.020
    [8]
    Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric prop- agation of electromagnetic waves through a planar chiral structure[J]. Phys Rev Lett. , 2006, 97(16): 167401. DOI: 10.1103/PhysRevLett.97.167401
    [9]
    Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J]. Phys Rev Lett. 2010, 104(25): 253902. DOI: 10.1103/PhysRevLett.104.253902
    [10]
    ZHAO R, CHEN H Y, ZHANG L, et al. Design and implementation of high efficiency and broadband transmission-type polarization converter based on diagonal split-ring resonator[J]. Progress in Electromagnetics Research, 2018, 161: 1-10. DOI: 10.2528/PIER17110604
    [11]
    赵铭茜, 程用志, 陈浩然, 等. 太赫兹波段双频带手征性超表面的设计[J]. 光学学报, 2019, 39(4): 333-341. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201904039.htm

    ZHAO Mingxi, CHENG Yongzhi, CHEN Haoran, et al. Design of dual-band chiral metasurface in terahertz band[J]. Acta Optica Sinica, 2019, 39(4): 333-341. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201904039.htm
    [12]
    陈琦, 潘武, 王泶尹, 等. 太赫兹宽带非对称传输器件的研究[J]. 半导体光电, 2019, 40(4): 472-475. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201904005.htm

    CHEN Qi, PAN Wu, WANG Cunyin, et al. Research on terahertz broadband asymmetric transmission devices[J]. Semiconductor Optoelectronics, 2019, 40(4): 472-475. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201904005.htm
    [13]
    Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J]. Phys Rev Lett. , 2010, 104(25): 253902. DOI: 10.1103/PhysRevLett.104.253902
    [14]
    LIU D J, XIAO Z Y, MA X L, et al. Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking[J]. Applied Physics Express, 2015, 8(5): 052001.1-052001.4. http://adsabs.harvard.edu/abs/2015APExp...8e2001L
    [15]
    TANG D F, WANG C, PAN W K, et al. Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band[J]. Opt Express, 2017, 25(10): 11329-39. DOI: 10.1364/OE.25.011329
    [16]
    王斌科, 王可欣, 田昌会, 等. 一种新型红外频率选择表面[J]. 红外技术, 2019, 41(1): 22-26. http://hwjs.nvir.cn/article/id/hwjs201901004

    WANG Binke, WANG Kexin, TIAN Changhui, et al. A novel infrared frequency selective surface[J]. Infrared Technology, 2019, 41(1): 22-26. http://hwjs.nvir.cn/article/id/hwjs201901004
    [17]
    孙靓. 复合人工电磁材料实现电磁波非对称传输性能的研究[D]. 南京: 南京大学, 2015.

    SUN Liang. Research on Asymmetric Transmission of Electromagnetic Wave by Composite Artificial Electromagnetic Materials[D]. Nanjing: Nanjing University, 2015.
  • Related Articles

    [1]WANG Qiaofang, WANG Chongwen, YE Hongwei, LIU Jian, YANG Yuping, ZHAO Yuanrong. Germanium-Based Infrared Thin Film Transmittance Stability Under Tropical Marine Environment[J]. Infrared Technology , 2025, 47(4): 530-537.
    [2]WU Haoyu, GUO Xin, GAN Linyu, CHEN Peng, XU Zhifeng, LIU Hui, JIAO Gangcheng, ZHU Yufeng, REN Yutian. Influence of Chamber Gas Composition on the Stability of GaAs Photocathode[J]. Infrared Technology , 2022, 44(8): 824-827.
    [3]ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology , 2022, 44(3): 205-211.
    [4]GUO Xiangxiang, HAN Penglei. Effect of Orifice Size on Flow Stability of Shape Memory Alloy Self-Regulated Cryocoolers[J]. Infrared Technology , 2021, 43(6): 607-613.
    [5]CHI Linhui, QIAN Yunsheng, JI Yuhao. Verification Protocol for Improving Communication Stability Between FPGAs[J]. Infrared Technology , 2020, 42(11): 1022-1027.
    [6]YAN Lei, SHI Feng, SHAN Cong, CHENG Hongchang, GUO Xin, LIU Hui, LUO Yang, ZHANG Xiaohui. Limiting Resolution of AlGaN Photocathode Image Intensifier Tube[J]. Infrared Technology , 2020, 42(8): 729-734.
    [7]YANG Ye, NI Xiaobing, YAN Bo, ZHI Qiang, LI Junguo. Study on the Relationship between Image Intensifier Cathode Pulse and Plate Brightness Stability[J]. Infrared Technology , 2018, 40(7): 691-694.
    [8]WANG Qiaofang, REN Yue, ZI Zhenghua, WANG Guiquan, LIU Jian, ZHANG Hongkun, YANG Yuping, PENG Daidong, SUN Juan, WANG Qian. Influence of the Micro Defect on the Stability of Ge-base Antireflective Films in Tropical Rainforest Environment[J]. Infrared Technology , 2016, 38(12): 1073-1077.
    [9]GUO Xiang-yang, CHANG Ben-kang, QIAO Jian-liang, WANG Xiao-hui. Comparison of Stability of GaN and GaAs Photocathode[J]. Infrared Technology , 2010, 32(2): 117-120. DOI: 10.3969/j.issn.1001-8891.2010.02.014
    [10]CHEN Bo-yang, CHEN Fan-sheng, GUO Qiang. Factors Analyse Based on MTF About Effecting Super Resolution Reconstructed Image[J]. Infrared Technology , 2009, 31(4): 215-219,223. DOI: 10.3969/j.issn.1001-8891.2009.04.008

Catalog

    Article views (528) PDF downloads (44) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return