WANG Dongsheng, WANG Hailong, ZHANG Fang, HAN Linfang, ZHAO Yilin. Infrared Image Defect Information Extraction Based on Temporal Information[J]. Infrared Technology , 2022, 44(6): 565-570.
Citation: WANG Dongsheng, WANG Hailong, ZHANG Fang, HAN Linfang, ZHAO Yilin. Infrared Image Defect Information Extraction Based on Temporal Information[J]. Infrared Technology , 2022, 44(6): 565-570.

Infrared Image Defect Information Extraction Based on Temporal Information

More Information
  • Received Date: July 11, 2021
  • Revised Date: August 21, 2021
  • In active infrared thermography technology, the extraction of defect information from infrared images is crucial. Traditional image processing methods can eliminate noise and improve image contrast, but several challenges remain, such as selecting the infrared image manually, subjectivity in the process of infrared image enhancement and segmentation, and information loss in the process of a single infrared image. To overcome these challenges, this study proposes a method for extracting defect information from infrared images based on time sequence information. First, concrete blocks with delamination are fabricated by indoor experiments. Then, active infrared thermal image detection technology is used to collect the infrared image data and temporal information is extracted for each pixel. Finally, the K-means method is used for defect feature extraction based on temporal information. The results show that the defect extraction method based on temporal information can extract hidden defect information. Furthermore, its hierarchical defect information extraction effect is better than that of the K-means method based on the spatial domain.
  • [1]
    Tran Q H, Huh J, Mac V H, et al. Effects of rebars on the detectability of subsurface defects in concrete bridges using square pulse thermography[J]. NDT & E International, 2018, 100: 92-100.
    [2]
    Konishi S, Kawakami K, Taguchi M. Inspection method with infrared thermometry for detect void in subway tunnel lining[J]. Procedia Engineering, 2016, 165: 474-83. DOI: 10.1016/j.proeng.2016.11.723
    [3]
    GONG J L, LIU J Y, YU Y T, et al. Multi-characteristic combination based reliability enhancement of optical bidirectional thermal wave radar imaging for GFRP laminates with subsurface defects[J]. NDT & E International, 2021, 119: 102415.
    [4]
    于龙姣, 于博, 李春庚, 等. 优化卷积网络及低分辨率热成像的夜间人车检测与识别[J]. 红外技术, 2020, 42(7): 651-659. http://hwjs.nvir.cn/article/id/hwjs202007008

    YU L J, YU B, LI C G, et al. Detection and recognition of persons and vehicles in low-resolution nighttime thermal images based on optimized convolutional neural network[J]. Infrared Technology, 2020, 42(7): 651-659. http://hwjs.nvir.cn/article/id/hwjs202007008
    [5]
    王加, 周永康, 李泽民, 等. 非制冷红外图像降噪算法综述[J]. 红外技术, 2021, 43(6): 557-565. http://hwjs.nvir.cn/article/id/380dcf6e-de3d-4411-ab70-e246d5c8ea27

    WANG J, ZHOU Y K, LI Z M, et al. A survey of uncooled infrared image denoising algorithms[J]. Infrared Technology, 2021, 43(6): 557-565. http://hwjs.nvir.cn/article/id/380dcf6e-de3d-4411-ab70-e246d5c8ea27
    [6]
    王书朋, 付程琳, 侯颖. 基于空时域级联滤波的红外焦平面条状噪声消除算法[J]. 红外技术, 2018, 40(4): 377-381. http://hwjs.nvir.cn/article/id/hwjs201804012

    WANG S P, FU L P, HOU Y. Destriping method of infrared images based on a concatenated spatial-temporal filter[J]. Infrared Technology, 2018, 40(4): 377-381. http://hwjs.nvir.cn/article/id/hwjs201804012
    [7]
    Heish M H, CHENG F C, Shie M C, et al. Fast and efficient median filter for removing 1%~99% levels of salt-and-pepper noise in images[J]. Engineering Applications of Artificial Intelligence, 2013, 26(4): 1333-1338. DOI: 10.1016/j.engappai.2012.10.012
    [8]
    朱道广, 隋修宝, 朱才高, 等. 基于多尺度的高动态红外图像增强算法[J]. 红外技术, 2013, 35(8): 476-481, 486. http://hwjs.nvir.cn/article/id/hwjs201308005

    ZHU D G, SUI X B, ZHU C G, et al. Enhancement algorithm for high dynamic range infrared image based on multi-scale processing[J]. Infrared Technology, 2013, 35(8): 476-481, 486. http://hwjs.nvir.cn/article/id/hwjs201308005
    [9]
    Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. DOI: 10.1109/TIP.2007.901238
    [10]
    刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法[J]. 物理学报, 2018, 67(23): 293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201823030.htm

    LIU J, ZHANG J X, DAI Yu. Image enhancement based on multi -guided filtering[J]. Acta Phys. Sin. , 2018, 67(23): 293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201823030.htm
    [11]
    彭道刚, 尹磊, 戚尔江, 等. 基于OTSU和区域生长的电厂管道缺陷检测与分割[J]. 红外技术, 2021, 43(5): 502-509. http://hwjs.nvir.cn/article/id/0d4584a9-4405-4877-b4c5-4ab4e8adcbbb

    PENG D G, YIN L, QI E J, et al. Power plant pipeline defect detection and segmentation based on Otsu's and region growing algorithms[J]. Infrared Technology, 2021, 43(5): 502-509. http://hwjs.nvir.cn/article/id/0d4584a9-4405-4877-b4c5-4ab4e8adcbbb
    [12]
    何谦, 刘伯运. 红外图像边缘检测算法综述[J]. 红外技术, 2021, 43(3): 199-207. http://hwjs.nvir.cn/article/id/f07883a2-f5b2-4521-b4ef-dceb94d24251

    HE Q, LIU B Y. Review of infrared image edge detection algorithms[J]. Infrared Technology, 2021, 43(5): 502-509. http://hwjs.nvir.cn/article/id/f07883a2-f5b2-4521-b4ef-dceb94d24251
    [13]
    ZHENG K, CHANG Y S, WANG K H, et al. Thermographic clustering analysis for defect detection in CFRP structures[J]. Polymer Testing, 2016, 49: 73-81. DOI: 10.1016/j.polymertesting.2015.11.009
    [14]
    LUO Q, GAO B, WOO W L, et al. Temporal and spatial deep learning network for infrared thermal defect detection[J]. NDT & E International, 2019, 108: 102164.
    [15]
    CHENG C, SHANG Z, SHEN Z. Bridge deck delamination segmentation based on aerial thermography through regularized grayscale morphological reconstruction and gradient statistics[J]. Infrared Physics & Technology, 2019, 98: 240-249.
    [16]
    汪凌志, 雷正刚, 周浩, 等. 基于空-谱特征K-means的长波红外高光谱图像分类[J]. 红外技术, 2020, 42(4): 348-355. http://hwjs.nvir.cn/article/id/hwjs202004007

    WANG L Z, LEI Z G, ZHOU H, et al. Long-wave infrared hyperspectral image classification based on K-means of spatial-spectral features[J]. Infrared Technology, 2020, 42(4): 348-355. http://hwjs.nvir.cn/article/id/hwjs202004007
    [17]
    苏洪超, 胡英, 洪少壮. 基于红外图像特征与K-means的边缘检测[J]. 红外技术, 2020, 42(1): 81-85. http://hwjs.nvir.cn/article/id/hwjs202001012

    SU H C, HU Y, HONG S Z. Edge detection based on characteristics of infrared image and K-means[J]. Infrared Technology, 2020, 42(1): 81-85. http://hwjs.nvir.cn/article/id/hwjs202001012
  • Related Articles

    [1]WANG Zhen, LIU Lei. Infrared Image Segmentation of Power Equipments Based on Improved Watershed Algorithm[J]. Infrared Technology , 2025, 47(4): 484-492.
    [2]LI Xin, ZENG Xiangjin, HONG LI, FENG Song. Wire Segmentation and Detection Method for Infrared Overhead Wire Images[J]. Infrared Technology , 2024, 46(12): 1390-1398.
    [3]LIU Peijin, ZHANG Xiangrui, WEI Ping. EnFCM Clustering Segmentation Method for Infrared Image of Electrical Equipments Based on Fusion Reconstruction[J]. Infrared Technology , 2024, 46(3): 295-304.
    [4]HU Chunan, WANG Fengqi, ZHU Donglin. Improved Sparrow Search Algorithm and Its Application in Infrared Image Segmentation[J]. Infrared Technology , 2023, 45(6): 605-612.
    [5]LIU He, ZHAO Tiancheng, LIU Junbo, JIAO Lixin, XU Zhihao, YUAN Xiaocui. Deep Residual UNet Network-based Infrared Image Segmentation Method for Electrical Equipment[J]. Infrared Technology , 2022, 44(12): 1351-1357.
    [6]YAN Zhe, JIANG Li, YANG Fan, LUO Zhibin, JIA Zan, ZHANG Wei, ZHU Hongyang, CHEN Ruzao, ZHU Guangming, GUO Xiaojun, LIU Mengran. Bi-Histogram Equalization Algorithm for Infrared Image Enhancement[J]. Infrared Technology , 2022, 44(9): 944-950.
    [7]CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu. Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment[J]. Infrared Technology , 2022, 44(2): 179-188.
    [8]ZHANG Lijuan, MEI Chang, LI Chaoran, ZHANG Run. Retinal Vessel Image Segmentation Based on RAU-net[J]. Infrared Technology , 2021, 43(12): 1222-1227,1233.
    [9]ZHANG Lian, LI Mengtian, YU Songlin, GONG Yu, YANG Hongjie. An Infrared Image Segmentation Method Based on Improved Lazy Snapping Algorithm[J]. Infrared Technology , 2021, 43(4): 372-377.
    [10]ZHANG Yishu, WANG Xiaona, HOU Dexin, YE Shuliang. Image Segmentation of Inductors Laser Thermal Imaging Based on Watershed Algorithm[J]. Infrared Technology , 2021, 43(4): 367-371.
  • Cited by

    Periodical cited type(3)

    1. 邱欣欣,温强,何婧. 基于参考帧的数字媒体视频图像信息隐藏算法. 吉林大学学报(信息科学版). 2025(02): 377-383 .
    2. 李环宇,冯国会,刘馨,蒲毅,王涵. 基于红外热成像的围护结构热工性能定量检测方法研究进展. 太阳能学报. 2024(07): 427-437 .
    3. 张迁,王剑,楚瑞博,陈欢欢. 基于BRISK-BEBLID特征的无人机图像快速配准方法. 激光杂志. 2023(06): 92-98 .

    Other cited types(1)

Catalog

    Article views (262) PDF downloads (47) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return