SHI Yifeng, CHEN Nan, ZHU Fang, MAO Wenbiao, LI Faming, WANG Tianfu, ZHANG Jiqing, YAO Libin. Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes[J]. Infrared Technology , 2024, 46(4): 427-436.
Citation: SHI Yifeng, CHEN Nan, ZHU Fang, MAO Wenbiao, LI Faming, WANG Tianfu, ZHANG Jiqing, YAO Libin. Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes[J]. Infrared Technology , 2024, 46(4): 427-436.

Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes

More Information
  • Received Date: December 05, 2023
  • Revised Date: January 18, 2024
  • Current infrared image super-resolution reconstruction methods, which are primarily designed based on experimental data, often fail in complex degradation scenarios encountered in real-world environments. To address this challenge, this paper presents a novel deep learning-based approach tailored for the super-resolution reconstruction of infrared images in real scenarios. The significant contributions of this research include the development of a model that simulates infrared image degradation in real-life settings and a network structure that integrates channel attention with dense connections. This structure enhances feature extraction and image reconstruction capabilities, effectively increasing the spatial resolution of low-resolution infrared images in realistic scenarios. The effectiveness and superiority of the proposed approach for processing infrared images in real-world contexts are demonstrated through a series of ablation studies and comparative experiments with existing super-resolution methods. The experimental results indicate that this method produces sharper edges and effectively eliminates noise and blur, thereby significantly improving the visual quality of the images.
  • [1]
    WANG Z, CHEN J, Hoi S C H. Deep learning for image super-resolution: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3365-3387.
    [2]
    LI J, PEI Z, ZENG T. From beginner to master: A survey for deep learning-based single-image super-resolution[J]. arXiv preprint arXiv: 2109.14335, 2021.
    [3]
    DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
    [4]
    SHI W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
    [5]
    LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of The IEEE Conference on Computer Vision And Pattern Recognition Workshops, 2017: 136-144.
    [6]
    WANG X, YU K, WU S, et al. Esrgan: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 63-79.
    [7]
    SUN C, LV J, LI J, et al. A rapid and accurate infrared image super-resolution method based on zoom mechanism[J]. Infrared Physics & Technology, 2018, 88: 228-238.
    [8]
    Suryanarayana G, TU E, YANG J. Infrared super-resolution imaging using multi-scale saliency and deep wavelet residuals[J]. Infrared Physics & Technology, 2019, 97: 177-186.
    [9]
    YAO T, LUO Y, HU J, et al. Infrared image super-resolution via discriminative dictionary and deep residual network[J]. Infrared Physics & Technology, 2020, 107: 103314.
    [10]
    Oz N, Sochen N, Markovich O, et al. Rapid super resolution for infrared imagery[J]. Optics Express, 2020, 28(18): 27196-27209. DOI: 10.1364/OE.389926
    [11]
    ZOU Y, ZHANG L, LIU C, et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J]. Optics and Lasers in Engineering, 2021, 146: 106717. DOI: 10.1016/j.optlaseng.2021.106717
    [12]
    李方彪, 何昕, 魏仲慧, 等. 生成式对抗神经网络的多帧红外图像超分辨率重建[J]. 红外与激光工程, 2018, 47(2): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802004.htm

    LI F, HE X, WEI Z, et al. Multiframe infrared image super-resolution reconstruction using generative adversarial networks[J]. Infrared and Laser Engineering, 2018, 47(2): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802004.htm
    [13]
    魏子康, 刘云清. 改进的RDN灰度图像超分辨率重建方法[J]. 红外与激光工程, 2020, 49(S1): 20200173. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2020S1022.htm

    WEI Z, LIU Y. Gray image super-resolution reconstruction based on improved RDN method[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200173. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2020S1022.htm
    [14]
    胡蕾, 王足根, 陈田, 等. 一种改进的SRGAN红外图像超分辨率重建算法[J]. 系统仿真学报, 2021, 33(9): 2109-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202109013.htm

    HU L, WANG Z, CHEN T, et al. An improved SRGAN infrared image super-resolution reconstruction algorithm[J]. Journal of System Simulation, 2021, 33(9): 2109-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202109013.htm
    [15]
    邱德粉, 江俊君, 胡星宇, 等. 高分辨率可见光图像引导红外图像超分辨率的Transformer网络[J]. 中国图象图形学报, 2023, 28(1): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202301012.htm

    QIU D, JIANG J, HU X, et al. Guided transformer for high-resolution visible image guided infrared image super-resolution[J]. Journal of Image and Graphics, 2023, 28(1): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202301012.htm
    [16]
    ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286-301.
    [17]
    TONG T, LI G, LIU X, et al. Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4799-4807.
    [18]
    ZHANG K, Liang J, Van Gool L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 4791-4800.
    [19]
    WANG X, XIE L, DONG C, et al. Real-esrgan: Training real-world blind super-resolution with pure synthetic data[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1905-1914.
    [20]
    ZHANG W, SHI G, LIU Y, et al. A closer look at blind super-resolution: Degradation models, baselines, and performance upper bounds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 527-536.
    [21]
    LIANG J, CAO J, SUN G, et al. Swinir: Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844.
    [22]
    Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801. DOI: 10.1049/el:20080522
    [23]
    Hanhart P, Korshunov P, Ebrahimi T. Benchmarking of quality metrics on ultra-high definition video sequences[C]//18th International Conference on Digital Signal Processing (DSP)of IEEE, 2013: 1-8.
    [24]
    Kundu D, Evans B L. Full-reference visual quality assessment for synthetic images: A subjective study[C]// IEEE International Conference on Image Processing (ICIP), 2015: 2374-2378.
    [25]
    Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
    [26]
    Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.
    [27]
    Blau Y, Mechrez R, Timofte R, et al. The 2018 PIRM challenge on perceptual image super-resolution[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 334-355.
  • Related Articles

    [1]LI Jianghui. A Method and System for Infrared Image Simulation Based on ModelSim[J]. Infrared Technology , 2024, 46(7): 802-806.
    [2]BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182.
    [3]YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.
    [4]ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.
    [5]WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969.
    [6]HU Linbo, LI Tangbing, YAO Jiangang, ZHU Xiangqian, LU Hang, QI Lujie, ZHENG Ling. Analysis of an Infrared Detection Case of Degradated Ceramic Voltage Insulator[J]. Infrared Technology , 2016, 38(7): 622-626.
    [7]ZHAO Gang, ZHANG Kai, SHAO Wei, YAN Jie. An Infrared Degradation Image Simulation Based on High-speed Turbulent Statistical Model[J]. Infrared Technology , 2014, (4): 294-297.
    [8]Research on Parallel Restoration Method for Infrared Detect Turbulence-degraded Images[J]. Infrared Technology , 2009, 31(1): 57-60. DOI: 10.3969/j.issn.1001-8891.2009.01.015
    [9]YANG Shao-hua, ZHANG Xiao-ming, LIU Xin-guang, WU Yi-nong. An Accelerated Life Model for Contamination Degradation of Stirling Cryocooler[J]. Infrared Technology , 2008, 30(8): 462-464. DOI: 10.3969/j.issn.1001-8891.2008.08.008
    [10]HE Cheng-jian, HONG Han-yu, ZHANG Tian-xu. Turbulence-degraded Infrared Image Blind Restoration Method Based on Generalized Regularization[J]. Infrared Technology , 2006, 28(8): 443-445. DOI: 10.3969/j.issn.1001-8891.2006.08.003
  • Cited by

    Periodical cited type(5)

    1. 宋加文,朱大明,左小清,付志涛,陈思静. 一种结合结构与能量信息的全色与多光谱图像融合方法. 红外技术. 2023(07): 696-704 . 本站查看
    2. 刘玉利,王克朝,刘琳. 基于机器学习的多光谱模糊图像降噪方法. 激光杂志. 2022(05): 156-160 .
    3. 潘绍明. 基于多融合多尺度特征的高光谱图像分类研究. 激光杂志. 2021(02): 110-114 .
    4. 宗泽雄. 用于水果成熟度无损检测的多光谱技术. 财富时代. 2020(08): 240-241 .
    5. 徐景秀,张青. 深度学习算法的多光谱图像压缩方法. 激光杂志. 2020(12): 73-77 .

    Other cited types(6)

Catalog

    Article views (155) PDF downloads (92) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return