Citation: | KONG Jincheng, SONG Linwei, QI Wenbin, JIANG Jun, CONG Shuren, LIU Yan, RONG Huiyu, XU Jiangming, FANG Dong, ZHAO Peng, JI Rongbin. Progress in LPE Growth of HgCdTe at Kunming Institute of Physics[J]. Infrared Technology , 2023, 45(2): 111-122. |
[1] |
杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.
YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.
|
[2] |
宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-102. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
|
[3] |
Reddy M, Jin X, Lofgreen D D, et al. Demonstration of high-quality MBE HgCdTe on 8-Inch wafers[J]. Journal of Electronic Materials, 2019, 48(10): 6040-6044. DOI: 10.1007/s11664-019-07246-y
|
[4] |
Smith E P G, Venzor G M, Newton M D, et al. Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication[J]. Journal of Electronic Materials, 2005, 34(6): 746-753. DOI: 10.1007/s11664-005-0014-8
|
[5] |
Bratt P R, Johnson S M, Rhiger D R, et al. Historical perspectives on HgCdTe material and device development at Raytheon Vision Systems[C]//Proceedings of SPIE, 2009, 7298: 1044-1078.
|
[6] |
Vilela Mauro F, Hogan Jack, Fennell Brian T, et al. Infinite-melt vertical liquid-phase epitaxy of HgCdTe from Hg solution: from VLWIR to SWIR[J]. Journal of Electronic Materials, 2022, 51: 4731-4741. DOI: 10.1007/s11664-022-09810-5
|
[7] |
Arkun F Erdem, Edwall Dennis D, Ellsworth Jon, et al. Characterization of HgCdTe films grown on large-area CdZnTe substrates by molecular beam epitaxy[J]. Journal of Electronic Materials, 2017, 46(9): 5374-5378. DOI: 10.1007/s11664-017-5441-9
|
[8] |
Mosby G, Rauscher B J, Bennett C, et al. Properties and characteristics of the Nancy Grace Roman Space Telescope H4RG-10 detectors[J]. Journal of Astronomical Telescopes Instruments and Systems, 2020, 6(4): DOI: 10.1117/1.JATIS.6.4.046001.
|
[9] |
Atkinson D, Bezawada N, Hipwood L G, et al. Operation and performance of new NIR detectors from SELEX[C]//Proceedings of SPIE, 2012, 8453: 84530U.
|
[10] |
Santailler Jean-Louis, Gout Erik, Journot Timotée, et al. From 5" CdZnTe ingots to high quality (111) CdZnTe substrates for SWIR 2k2 15 µm pitch infrared focal plane arrays manufacturing[C]//Proceedings of SPIE, 2020: DOI: 10.1117/12.2561377.
|
[11] |
Lovecchio P, Wong K, Parodos T, et al. Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes [C]//Proceedings of SPIE, 2004, 5564: 65-72.
|
[12] |
Wenisch J, Bitterlich H, Bruder M, et al. Large-format and long-wavelength infrared mercury cadmium telluride detectors[J]. Journal of Electronic Materials, 2013, 42(11): 3186-3190. DOI: 10.1007/s11664-013-2757-y
|
[13] |
孙权志, 孙瑞赟, 魏彦锋, 等. 50 mm×50 mm高性能HgCdTe液相外延材料的批生产技术[J]. 红外与毫米波学报, 2017, 36(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102010.htm
SUN Quanzhi, SUN Ruiyun, WEI Yanfen, et al. Batch production technology of 50 mm×50 mm HgCdTe LPE materials with high performance[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102010.htm
|
[14] |
刘伟华, 刘帆, 吴正虎, 等. 12 μm像元间距1280×1024碲镉汞中波红外焦平面探测器的制备及性能研究[J]. 红外, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm
LIU Weihua, LIU Fan, WU Zhenghu, et al. Study on preparation and performance of 1280×1024@12 μm HgCdTe MWIR focal plane detectors[J]. Infrared, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm
|
[15] |
高达, 李震, 王丹, 等. 大尺寸碲锌镉基碲镉汞材料分子束外延技术研究[J]. 激光与红外, 2022, 52(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203013.htm
GAO Da, LI Zhen, WANG Dan, et al. Research on molecular beam epitaxy growth of HgCdTe large CdZnTe substrate[J]. Laser & Infrared, 2022, 52(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203013.htm
|
[16] |
Koyama A, Hichiwa A, Hirano R. Recent progress in CdZnTe craystal[J]. Journal of Electronic Materials, 1999, 28(6): 683-687. DOI: 10.1007/s11664-999-0054-6
|
[17] |
袁绶章, 赵文, 孔金丞, 等. Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响[J]. 红外技术, 2021, 43(6): 517-522. http://hwjs.nvir.cn/article/id/ebc94562-b5eb-4803-b866-53a3ed83d591
YUAN Shouzhang, ZHAO Wen, KONG Jincheng, et al. Influence of Cd-rich annealing on position-dependent conductivity transition in Cd1-xZnxTe crystal[J]. Infrared Technology, 2021, 43(6): 517-522. http://hwjs.nvir.cn/article/id/ebc94562-b5eb-4803-b866-53a3ed83d591
|
[18] |
赵文, 孔金丞, 姜军, 等. Cd1-xZnxTe晶体中由本征缺陷引起的导电类型转变界面研究[J]. 红外技术, 2022, 44(6): 560-564. http://hwjs.nvir.cn/article/id/b83b7360-956e-4770-9595-8b1658deaa0b
ZHAO Wen, KONG Jincheng, JIANG Jun, et al. Position-dependent conductivity transition by intrinsic defects in Cd1-xZnxTe crystal[J]. Infrared Technology, 2022, 44(6): 560-564. http://hwjs.nvir.cn/article/id/b83b7360-956e-4770-9595-8b1658deaa0b
|
[19] |
袁绶章, 赵文, 孔金丞, 等. 原位退火对碲锌镉晶体第二相夹杂缺陷的影响[J]. 红外技术, 2021, 43(7): 615-621. http://hwjs.nvir.cn/article/id/92499484-e5a1-4255-858b-0af603887888
YUAN Shouzhang, ZHAO Wen, KONG Jincheng, et al. Effect of in-situ post-annealing on the second phase inclusion defects[J]. Infrared Technology, 2021, 43(7): 615-621. http://hwjs.nvir.cn/article/id/92499484-e5a1-4255-858b-0af603887888
|
[20] |
Cathignol A, Brellier D, Gout E, et al. From CdZnTe bulk growth to HgCdTe infra-red detectors: mastering the chain for high-performance and reliable imaging[C]//Proceedings of SPIE, 2018, 10624, DOI: 10.1117/12.2304950.
|
[21] |
龚晓丹, 李红福, 杨超伟, 等. 大面阵短波碲镉汞红外焦平面器件研究[J]. 红外与激光工程, 2022, 51(9): DOI: 10.3788/IRLA20220079.
GONG Xiaodan, LI Hongfu, YANG Chaowei, et al. Study on large-area array SW HgCdTe infrared focal plane device[J]. Infrared and Laser Engineering, 2022, 51(9): DOI: 10.3788/IRLA20220079.
|
[22] |
李立华, 熊伯俊, 杨超伟, 等. P-on-n长波、甚长波碲镉汞红外焦平面器件技术研究[J]. 红外与毫米波学报, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202203001.htm
LI Lihua, XIONG Bojun, YANG Chaowei, et al. Research on p-on-n LWIR and VLWIR HgCdTe infrared focal plane detectors technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202203001.htm
|
[23] |
Wollrab R, Bauer A, Bitterlich H, et al. Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications[J]. Journal of Electronic Materials, 2011, 40(8): 1618-1623.
|
[24] |
Tennant W E, Lee Donald, Zandian Majid, et al. MBE HgCdTe technology: a very general solution to IR detection, described by "Rule 07", a very convenient heuristic[J]. Journal of Electronic Materials, 2008, 37(9): 1406-1410.
|
[25] |
陈军, 习中立, 秦强, 等. 碲镉汞高温红外探测器组件进展[J]. 红外与激光工程, 2023, 52(1), DOI: 10.3788/IRLA20220462.
CHEN Jun, XI Zhongli, QIN Qiang, et al. Advance in high operating temperature HgCdTe infrared detector[J]. Infrared and Laser Engineering, 2023, 52(1): DOI: 10.3788/IRLA20220462.
|
[1] | GONG Jiamin, ZHANG Lei, LIU Shanghui, JIANG Jiewei, JIN Ku. Image Fusion Based on Simplified Two-Dimensional Kaniadakis Entropy Segmentation Algorithm and Fast Guided Filtering[J]. Infrared Technology , 2025, 47(2): 201-210. |
[2] | JIANG Jiewei, LIU Shanghui, JIN Ku, LIU Haiyang, WEI Xumeng, GONG Jiamin. Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering[J]. Infrared Technology , 2023, 45(3): 249-256. |
[3] | HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088. |
[4] | CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403. |
[5] | CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088. |
[6] | HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915. |
[7] | GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan. Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J]. Infrared Technology , 2018, 40(12): 1161-1169. |
[8] | GAN Ling, ZHANG Qianwen. Image Fusion Method Combining Non-subsampled Contourlet Transform and Guide Filtering[J]. Infrared Technology , 2018, 40(5): 444-448,454. |
[9] | GE Peng, YANG Bo, MAO Wenbiao, CHEN Shaolin, ZHANG Qiaoyan, HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology , 2017, 39(12): 1092-1097. |
[10] | LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927. |
1. |
朱亚辉. NSCT框架下动静态联合滤波的红外与可见光图像融合方法. 电脑知识与技术. 2024(08): 1-4 .
![]() | |
2. |
张剑,高云,何栋. 基于离散2-D小波多级分解的电容器外观缺陷视觉检测方法. 电子器件. 2024(05): 1255-1260 .
![]() | |
3. |
陈超洋,姜媛媛. 基于深度图像分解的红外与可见光图像融合. 红外技术. 2024(12): 1362-1370 .
![]() | |
4. |
李晨,侯进,李金彪,陈子锐. 基于注意力与残差级联的红外与可见光图像融合方法. 计算机工程. 2022(07): 234-240 .
![]() | |
5. |
李文,叶坤涛,舒蕾蕾,李晟. 基于高斯模糊逻辑和ADCSCM的红外与可见光图像融合算法. 红外技术. 2022(07): 693-701 .
![]() | |
6. |
李永萍,杨艳春,党建武,王阳萍. 基于变换域VGGNet19的红外与可见光图像融合. 红外技术. 2022(12): 1293-1300 .
![]() | |
7. |
孙学蕾,高宏伟. 改进小波变换的红外与可见光融合方法研究. 沈阳理工大学学报. 2021(03): 19-23+28 .
![]() | |
8. |
赵汝海,汪方斌. 基于灰度和信息熵融合的金属疲劳偏振热像分割算法. 激光与光电子学进展. 2021(24): 260-271 .
![]() |