KONG Jincheng, SONG Linwei, QI Wenbin, JIANG Jun, CONG Shuren, LIU Yan, RONG Huiyu, XU Jiangming, FANG Dong, ZHAO Peng, JI Rongbin. Progress in LPE Growth of HgCdTe at Kunming Institute of Physics[J]. Infrared Technology , 2023, 45(2): 111-122.
Citation: KONG Jincheng, SONG Linwei, QI Wenbin, JIANG Jun, CONG Shuren, LIU Yan, RONG Huiyu, XU Jiangming, FANG Dong, ZHAO Peng, JI Rongbin. Progress in LPE Growth of HgCdTe at Kunming Institute of Physics[J]. Infrared Technology , 2023, 45(2): 111-122.

Progress in LPE Growth of HgCdTe at Kunming Institute of Physics

More Information
  • Received Date: December 13, 2022
  • Revised Date: January 13, 2023
  • The recent progress in the LPE growth of HgCdTe(MCT) epi-layer at the Kunming Institute of Physics (KIP) is reported. The precipitates and inclusion density of the CdZnTe substrate are less than 5×103 cm−2 and the etch pit density (EPD) is less than 4.0×104 cm−2. Owing to the oriented growth technology of the CdZnTe single crystal with ϕ=120 mm, the variation of the Zn components in the prepared substrate wafers with ϕ=120 mm (111) was less than 0.36%. The maximum size of the HgCdTe films grown by LPE was up to 70 mm×75 mm, with an etch pit density (EPD) of 5×104 cm−2 and DCRC-FWHM less than 35 arcsec (could be lower than 25 arcsec). Over a substrate area of 50 mm×60 mm, the thickness homogeneity of the LPE MCT epi-layer is better than Δd=±1.25 μm, and a cut-off wavelength homogeneity better than Δλ=±0.1 μm is achieved for the LWIR MCT epi-layers; that of the MWIR epi-layers are ±1 μm and ±0.05 μm, respectively. Due to the improvement of material technology, which effectively increases the yield of low-cost MCT IRFPAs at KIP, high-performance LW/VLW/HOT IRFPAs and large array detectors such as 2048×2048 and 4096×4096 based on MCT/CZT have been developed.
  • [1]
    杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.
    [2]
    宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-102. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd

    SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
    [3]
    Reddy M, Jin X, Lofgreen D D, et al. Demonstration of high-quality MBE HgCdTe on 8-Inch wafers[J]. Journal of Electronic Materials, 2019, 48(10): 6040-6044. DOI: 10.1007/s11664-019-07246-y
    [4]
    Smith E P G, Venzor G M, Newton M D, et al. Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication[J]. Journal of Electronic Materials, 2005, 34(6): 746-753. DOI: 10.1007/s11664-005-0014-8
    [5]
    Bratt P R, Johnson S M, Rhiger D R, et al. Historical perspectives on HgCdTe material and device development at Raytheon Vision Systems[C]//Proceedings of SPIE, 2009, 7298: 1044-1078.
    [6]
    Vilela Mauro F, Hogan Jack, Fennell Brian T, et al. Infinite-melt vertical liquid-phase epitaxy of HgCdTe from Hg solution: from VLWIR to SWIR[J]. Journal of Electronic Materials, 2022, 51: 4731-4741. DOI: 10.1007/s11664-022-09810-5
    [7]
    Arkun F Erdem, Edwall Dennis D, Ellsworth Jon, et al. Characterization of HgCdTe films grown on large-area CdZnTe substrates by molecular beam epitaxy[J]. Journal of Electronic Materials, 2017, 46(9): 5374-5378. DOI: 10.1007/s11664-017-5441-9
    [8]
    Mosby G, Rauscher B J, Bennett C, et al. Properties and characteristics of the Nancy Grace Roman Space Telescope H4RG-10 detectors[J]. Journal of Astronomical Telescopes Instruments and Systems, 2020, 6(4): DOI: 10.1117/1.JATIS.6.4.046001.
    [9]
    Atkinson D, Bezawada N, Hipwood L G, et al. Operation and performance of new NIR detectors from SELEX[C]//Proceedings of SPIE, 2012, 8453: 84530U.
    [10]
    Santailler Jean-Louis, Gout Erik, Journot Timotée, et al. From 5" CdZnTe ingots to high quality (111) CdZnTe substrates for SWIR 2k2 15 µm pitch infrared focal plane arrays manufacturing[C]//Proceedings of SPIE, 2020: DOI: 10.1117/12.2561377.
    [11]
    Lovecchio P, Wong K, Parodos T, et al. Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes [C]//Proceedings of SPIE, 2004, 5564: 65-72.
    [12]
    Wenisch J, Bitterlich H, Bruder M, et al. Large-format and long-wavelength infrared mercury cadmium telluride detectors[J]. Journal of Electronic Materials, 2013, 42(11): 3186-3190. DOI: 10.1007/s11664-013-2757-y
    [13]
    孙权志, 孙瑞赟, 魏彦锋, 等. 50 mm×50 mm高性能HgCdTe液相外延材料的批生产技术[J]. 红外与毫米波学报, 2017, 36(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102010.htm

    SUN Quanzhi, SUN Ruiyun, WEI Yanfen, et al. Batch production technology of 50 mm×50 mm HgCdTe LPE materials with high performance[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102010.htm
    [14]
    刘伟华, 刘帆, 吴正虎, 等. 12 μm像元间距1280×1024碲镉汞中波红外焦平面探测器的制备及性能研究[J]. 红外, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm

    LIU Weihua, LIU Fan, WU Zhenghu, et al. Study on preparation and performance of 1280×1024@12 μm HgCdTe MWIR focal plane detectors[J]. Infrared, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm
    [15]
    高达, 李震, 王丹, 等. 大尺寸碲锌镉基碲镉汞材料分子束外延技术研究[J]. 激光与红外, 2022, 52(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203013.htm

    GAO Da, LI Zhen, WANG Dan, et al. Research on molecular beam epitaxy growth of HgCdTe large CdZnTe substrate[J]. Laser & Infrared, 2022, 52(3): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203013.htm
    [16]
    Koyama A, Hichiwa A, Hirano R. Recent progress in CdZnTe craystal[J]. Journal of Electronic Materials, 1999, 28(6): 683-687. DOI: 10.1007/s11664-999-0054-6
    [17]
    袁绶章, 赵文, 孔金丞, 等. Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响[J]. 红外技术, 2021, 43(6): 517-522. http://hwjs.nvir.cn/article/id/ebc94562-b5eb-4803-b866-53a3ed83d591

    YUAN Shouzhang, ZHAO Wen, KONG Jincheng, et al. Influence of Cd-rich annealing on position-dependent conductivity transition in Cd1-xZnxTe crystal[J]. Infrared Technology, 2021, 43(6): 517-522. http://hwjs.nvir.cn/article/id/ebc94562-b5eb-4803-b866-53a3ed83d591
    [18]
    赵文, 孔金丞, 姜军, 等. Cd1-xZnxTe晶体中由本征缺陷引起的导电类型转变界面研究[J]. 红外技术, 2022, 44(6): 560-564. http://hwjs.nvir.cn/article/id/b83b7360-956e-4770-9595-8b1658deaa0b

    ZHAO Wen, KONG Jincheng, JIANG Jun, et al. Position-dependent conductivity transition by intrinsic defects in Cd1-xZnxTe crystal[J]. Infrared Technology, 2022, 44(6): 560-564. http://hwjs.nvir.cn/article/id/b83b7360-956e-4770-9595-8b1658deaa0b
    [19]
    袁绶章, 赵文, 孔金丞, 等. 原位退火对碲锌镉晶体第二相夹杂缺陷的影响[J]. 红外技术, 2021, 43(7): 615-621. http://hwjs.nvir.cn/article/id/92499484-e5a1-4255-858b-0af603887888

    YUAN Shouzhang, ZHAO Wen, KONG Jincheng, et al. Effect of in-situ post-annealing on the second phase inclusion defects[J]. Infrared Technology, 2021, 43(7): 615-621. http://hwjs.nvir.cn/article/id/92499484-e5a1-4255-858b-0af603887888
    [20]
    Cathignol A, Brellier D, Gout E, et al. From CdZnTe bulk growth to HgCdTe infra-red detectors: mastering the chain for high-performance and reliable imaging[C]//Proceedings of SPIE, 2018, 10624, DOI: 10.1117/12.2304950.
    [21]
    龚晓丹, 李红福, 杨超伟, 等. 大面阵短波碲镉汞红外焦平面器件研究[J]. 红外与激光工程, 2022, 51(9): DOI: 10.3788/IRLA20220079.

    GONG Xiaodan, LI Hongfu, YANG Chaowei, et al. Study on large-area array SW HgCdTe infrared focal plane device[J]. Infrared and Laser Engineering, 2022, 51(9): DOI: 10.3788/IRLA20220079.
    [22]
    李立华, 熊伯俊, 杨超伟, 等. P-on-n长波、甚长波碲镉汞红外焦平面器件技术研究[J]. 红外与毫米波学报, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202203001.htm

    LI Lihua, XIONG Bojun, YANG Chaowei, et al. Research on p-on-n LWIR and VLWIR HgCdTe infrared focal plane detectors technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202203001.htm
    [23]
    Wollrab R, Bauer A, Bitterlich H, et al. Planar n-on-p HgCdTe FPAs for LWIR and VLWIR applications[J]. Journal of Electronic Materials, 2011, 40(8): 1618-1623.
    [24]
    Tennant W E, Lee Donald, Zandian Majid, et al. MBE HgCdTe technology: a very general solution to IR detection, described by "Rule 07", a very convenient heuristic[J]. Journal of Electronic Materials, 2008, 37(9): 1406-1410.
    [25]
    陈军, 习中立, 秦强, 等. 碲镉汞高温红外探测器组件进展[J]. 红外与激光工程, 2023, 52(1), DOI: 10.3788/IRLA20220462.

    CHEN Jun, XI Zhongli, QIN Qiang, et al. Advance in high operating temperature HgCdTe infrared detector[J]. Infrared and Laser Engineering, 2023, 52(1): DOI: 10.3788/IRLA20220462.
  • Related Articles

    [1]XU Haiyang, ZHAO Wei, LIU Jianye. Infrared and Visible Image Registration Algorithm Based on Edge Structure Features[J]. Infrared Technology , 2023, 45(8): 858-862.
    [2]ZHAO Tiancheng, LUO Lyu, YANG Daiyong, LIU He, YUAN Gang, XU Zhihao. A Multi-Attribute Fusion Method for Digitizing Infrared Thermal Characteristics of Power Equipment[J]. Infrared Technology , 2021, 43(11): 1097-1103.
    [3]YIN Aijun, YAO Wenjie. The Evaluation Method and Application of Hidden Markov in Eddy Current Thermal Imaging[J]. Infrared Technology , 2019, 41(12): 1141-1145,1150.
    [4]LI Ruidong, SUN Xiechang, LI Meng. Infrared Feature Extraction and Recognition Technology of Space Target[J]. Infrared Technology , 2017, 39(5): 427-435.
    [5]XU Dehai, WEI Xueming, PENG Yao, MIAO Kang, REN Mingyi. Feature Extraction and Recognition of Ships by an Uncompleted Dictionary[J]. Infrared Technology , 2016, 38(9): 765-769.
    [6]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Based on MRF Combined with Two-algorithm Game[J]. Infrared Technology , 2015, (2): 134-138.
    [7]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Algorithm Based on MRF Combined with the Game-theory[J]. Infrared Technology , 2014, (10): 801-806.
    [8]CHEN Ya-bing, WANG Yong-zhong, WANG Yan-hua. IR Feature Extraction Based on Imbalance Fisher Discrimination[J]. Infrared Technology , 2008, 30(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2008.07.007
    [9]A Tracking Method Based on Curve Fitting Prediction of IR Object[J]. Infrared Technology , 2003, 25(4): 23-25,31. DOI: 10.3969/j.issn.1001-8891.2003.04.006
    [10]Application of the Characteristic Extraction for the Detection of the Internal Micro Bulk Defects in Semiconducting Materials by Near Infrared Laser Scattering Light Distribution Analyze Technology[J]. Infrared Technology , 2002, 24(3): 23-26. DOI: 10.3969/j.issn.1001-8891.2002.03.006
  • Cited by

    Periodical cited type(5)

    1. 曹一青,姚咏儿,沈志娟,吕丽军. 超广角透射式日盲紫外光学系统设计. 量子电子学报. 2024(04): 607-615 .
    2. 司昌田,杨磊,郭程祥,史天翼,谢洪波. 基于衍射元件的宽光谱紫外中继光学系统研究. 应用光学. 2023(03): 476-483 .
    3. 杨代勇,刘赫,林海丹,于群英,列剑平,李易. 电力设备外绝缘放电声-光协同检测及诊断技术. 电瓷避雷器. 2023(06): 209-218 .
    4. 向宇,方航. 机载紫外告警干扰源处理研究. 舰船电子工程. 2022(03): 89-92 .
    5. 陈塑淏,吕博,刘伟奇,冯睿,魏忠伦. 用于电晕检测的日盲紫外成像系统设计. 光子学报. 2022(09): 363-372 .

    Other cited types(2)

Catalog

    Article views (404) PDF downloads (205) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return