LIANG Chengquan, LYU Deshen, ZHU Haoliang, LU Xiao. Detection of Methane Concentration Based on TDLAS Technology and Wavelet Transform Denoising Algorithm[J]. Infrared Technology , 2023, 45(2): 209-216.
Citation: LIANG Chengquan, LYU Deshen, ZHU Haoliang, LU Xiao. Detection of Methane Concentration Based on TDLAS Technology and Wavelet Transform Denoising Algorithm[J]. Infrared Technology , 2023, 45(2): 209-216.

Detection of Methane Concentration Based on TDLAS Technology and Wavelet Transform Denoising Algorithm

More Information
  • Received Date: May 10, 2022
  • Revised Date: August 24, 2022
  • To improve the detection accuracy of methane concentration, an experimental system based on tunable diode laser absorption spectroscopy(TDLAS) technology was built. Taking advantage of the high absorption intensity of methane at a wavelength of 1653.72 nm and its ability to eliminate the interference of other gases to the greatest extent, methane concentration was detected by extracting the second harmonic signal. The heursure hard threshold algorithm, heursure soft threshold algorithm, and sqtwolog fixed threshold algorithm are used as the wavelet transform threshold algorithms, respectively; the sqtwolog fixed threshold algorithm is preferred as the wavelet transform threshold algorithm by analyzing the methane absorption signal spectrum, the methane second harmonic signal spectrum, the signal-to-noise ratio and root mean square error of the methane absorption signal obtained without denoising and after denoising. The results of the linear fitting experiment of methane standard gas with different concentrations and the repeatability experiment of methane standard gas of a specific concentration show that the noise interference can be effectively reduced by the wavelet transform using the sqtwolog fixed threshold algorithm. The goodness of fit R2 between the second-harmonic signal extracted after denoising and the real methane concentration was 0.984, indicating that the fitting effect was better. TDLAS technology combined with the wavelet transform denoising algorithm can realize the detection of methane concentration and improve the detection accuracy of methane concentration. TDLAS technology combined with the wavelet transform denoising algorithm can realize the detection of methane concentration and improve its detection accuracy.
  • [1]
    陈国华, 董浩宇, 张强, 等. 狭长受限空间甲烷-空气爆炸事故研究评述[J]. 安全与环境学报, 2020, 20(3): 946-959.

    CHEN Guohua, DONG Haoyu, ZHANG Qiang, et al. Review on the methane-air explosion accidents in the narrow confined space[J]. Journal of Safety and Environment, 2020, 20(3): 946-959.
    [2]
    张旭, 郭腾霄, 杨柳, 等. 基于近红外TDLAS检测技术的甲烷浓度场重建研究[J]. 红外技术, 2018, 40(6): 603-611. http://hwjs.nvir.cn/article/id/hwjs201806014

    ZHANG Xu, GUO Tengxiao, YANG Liu, et al. Research of methane concentration field reconstruction based on near infrared TDLAS detection technology[J]. Infrared Technology, 2018, 40(6): 603-611. http://hwjs.nvir.cn/article/id/hwjs201806014
    [3]
    李传, 杨炳雄, 范凌, 等. 基于近红外光谱差分吸收法的甲烷激光式检测系统研究[J]. 煤炭技术, 2015, 34(10): 251-253. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510095.htm

    LI Chuan, YANG Bingxiong, FAN Ling, et al. Research of methane's laser detection system based on near-infrared differential absorption spectroscopy technique[J]. Coal Technology, 2015, 34(10): 251-253. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510095.htm
    [4]
    李志永, 谭荣清, 黄伟, 等. 傅里叶变换红外光谱技术测量甲烷气压的实验研究[J]. 中国激光, 2017, 44(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201703007.htm

    LI Zhiyong, TAN Rongqing, HUANG Wei, et al. Methane pressure detection based on Fourier transform infrared spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201703007.htm
    [5]
    樊保龙. 大尺度条件下甲烷-空气和煤尘-空气混合及爆炸特性研究[D]. 北京: 北京理工大学, 2015.

    FAN Baolong. Study on Mixing and Explosion Characteristics of Methane-Air and Coal-dust-air at Large Scale[D]. Beijing: Beijing Institute of Technology, 2015.
    [6]
    DENG Jun, CHEN Weile, WANG Weifeng, et al. Study on online detection method of methane gas in coal mine based on TDLAS technology[C]//Proceedings of the 11th International Mine Ventilation Congress, 2018(4): 318-332.
    [7]
    WANG Zhimin, WANG Han, YU Yingchun, et al. Simulation and analysis of CH4 concentration measurement based on QCL-TDLAS[J]. IOP Conference Series Earth and Environmental Science, 2020, 568(1): 012013. DOI: 10.1088/1755-1315/568/1/012013
    [8]
    GAO Zongli, YE Weilin, ZHENG Chuantao, et al. Wavelet-denoising technique in near-infrared methane detection based on tunable diode laser absorption spectroscopy[J]. Optoelectronics Letters, 2014(10): 299-303.
    [9]
    张义, 康信龙, 李长吾, 等. 基于TDLAS技术的空间网格化甲烷检测方法[J]. 大连工业大学学报, 2015, 34(2): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DLQG201502016.htm

    ZHANG Yi, KANG Xinlong, LI Changwu, et al. Space grid methane detection method based on TDLAS technology[J]. Journal of Dalian Polytechnic University, 2015, 34(2): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DLQG201502016.htm
    [10]
    叶年年, 冯若尘, 田思雨, 等. 基于TDLAS的甲烷气体检测技术综述[J]. 内蒙古煤炭经济, 2019(12): 43-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT201912020.htm

    YE Niannian, FENG Ruochen, TIAN Siyu, et al. Overview of methane gas detection technology based on TDLAS[J]. Inner Mongolia Coal Economy, 2019(12): 43-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT201912020.htm
    [11]
    毕诚. 基于TDLAS的空间对射型飞机货舱火警探测硬件系统研究[D]. 天津: 中国民航大学, 2019.

    BI Cheng. Research on hardware system on spatial anti-radiation fire detection of aircrafts cargo based on TDLAS[D]. Tianjin: Civil Aviation University of China, 2019.
    [12]
    越方禹, 毛峰, 王涵, 等. 高功率半导体激光器红外缺陷发射与热效应[J]. 激光与光电子学进展, 2019, 56(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201911001.htm

    YUE Fangyu, MAO Feng, WANG Han, et al. Infrared defect emission and thermal effect in high power diode lasers[J]. Laser & Optoelectronics Progress, 2019, 56(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201911001.htm
    [13]
    彭琛. 基于光声气体检测的半导体激光器耦合技术研究[D]. 绵阳: 西南科技大学, 2012.

    PENG Chen. Semiconductor Laser Coupling Technology Based on Photoacoustic Gas Detection[D]. Mianyang: Southwest University of Science and Technology, 2012.
    [14]
    张莹, 王立洪. 基于残差的非线性自回归模型的拟合优度检验[J]. 南京大学学报(数学半年刊), 2012, 29(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SXXT201201013.htm

    ZHANG Ying, WANG Lihong. Goodness-of-fit test using residuals in infinite-order nonlinear autoregressive models[J]. Journal of Nanjing University Mathematical Biquarterly, 2012, 29(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SXXT201201013.htm
    [15]
    桂文林, 伍超标. 标准差和平均差的内在关系[J]. 统计与决策, 2004(4): 122-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200404070.htm

    GUI Wenlin, WU Chaobiao. Intrinsic relationship between standard deviation and mean difference[J]. Statistics and Decision, 2004(4): 122-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200404070.htm
  • Related Articles

    [1]SONG Shanshan, ZHAI Xuping. Improved Infrared Anomaly Target Detection Algorithm Based on Single Gaussian Model[J]. Infrared Technology , 2021, 43(9): 885-888,894.
    [2]WU Tianquan, GUO Jing, GOU Xiantai, HUANG Qinqin, ZHOU Weichao. Method of Detecting Substation Equipment in Infrared Images Based on Improved Gaussian Convolution Kernel[J]. Infrared Technology , 2021, 43(3): 230-236.
    [3]YU Xiaoming, LI Siying, SHI Shengnan. An Improved Algorithm for Moving Target Detection Using a Gaussian Mixture with Three-frame Difference[J]. Infrared Technology , 2019, 41(3): 256-261.
    [4]CHEN Jiali, ZHANG Zhiyong. Velocity Estimation of Precision Pointing Mechanisms Based on Adaptive Kalman Filter[J]. Infrared Technology , 2018, 40(4): 388-394.
    [5]FU Dong-mei, TANG Sheng-bo. Infrared Moving Object Detection Based on Improved Gaussian Mixture Model[J]. Infrared Technology , 2014, (8): 628-632.
    [6]XU Xiang-jun, WANG Sheng-peng, JI Qing-chun, LIU Dong-fang, QIAN Wei-dong, YU Jie, YAN Ya-jing. Insulator Infrared Image Recognition Method Based on Gaussian Scale-space and GHT[J]. Infrared Technology , 2014, (7): 596-599.
    [7]GAO Xiao-dan, WEI Wan-hua. An Adaptive Enhancement Algorithm Based on Gaussian Distribution for Infrared Image[J]. Infrared Technology , 2014, 36(5): 381-383.
    [8]Application of Gaussian Quadrics Fitting in the Infrared Point Targets Detection in Sky Background[J]. Infrared Technology , 2013, (10): 638-641.
    [9]CHEN Wei-zhen, ZHANG Chun-hua, ZHOU Xiao-dong. Study of Star-sky Image Background Characteristics Based on Local-histogram Gaussian Fitting Method[J]. Infrared Technology , 2008, 30(4): 230-233. DOI: 10.3969/j.issn.1001-8891.2008.04.012
    [10]CAO Zhan-hui, LI Yan-jun, ZHANG Ke, WU Pan-long. A Novel Linear Edge Extraction Method Based on Gaussian Function[J]. Infrared Technology , 2006, 28(4): 207-209. DOI: 10.3969/j.issn.1001-8891.2006.04.006
  • Cited by

    Periodical cited type(3)

    1. 耿利红,饶启超,段燕波,刘湘德,迟国春. HOT器件用旋转式斯特林制冷机数值模拟及实验研究. 真空与低温. 2025(02): 239-247 .
    2. 张利明,李艳红,冯志攀,宋淑芳,付志凯,王冠,张磊. 高工作温度碲镉汞红外探测器杜瓦结构研究. 激光与红外. 2024(07): 1081-1085 .
    3. 饶启超,耿利红,刘志勇,李建国. 斯特林制冷机热真空环境散热设计与分析. 红外. 2024(11): 28-33 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return