Citation: | LIANG Chengquan, LYU Deshen, ZHU Haoliang, LU Xiao. Detection of Methane Concentration Based on TDLAS Technology and Wavelet Transform Denoising Algorithm[J]. Infrared Technology , 2023, 45(2): 209-216. |
[1] |
陈国华, 董浩宇, 张强, 等. 狭长受限空间甲烷-空气爆炸事故研究评述[J]. 安全与环境学报, 2020, 20(3): 946-959.
CHEN Guohua, DONG Haoyu, ZHANG Qiang, et al. Review on the methane-air explosion accidents in the narrow confined space[J]. Journal of Safety and Environment, 2020, 20(3): 946-959.
|
[2] |
张旭, 郭腾霄, 杨柳, 等. 基于近红外TDLAS检测技术的甲烷浓度场重建研究[J]. 红外技术, 2018, 40(6): 603-611. http://hwjs.nvir.cn/article/id/hwjs201806014
ZHANG Xu, GUO Tengxiao, YANG Liu, et al. Research of methane concentration field reconstruction based on near infrared TDLAS detection technology[J]. Infrared Technology, 2018, 40(6): 603-611. http://hwjs.nvir.cn/article/id/hwjs201806014
|
[3] |
李传, 杨炳雄, 范凌, 等. 基于近红外光谱差分吸收法的甲烷激光式检测系统研究[J]. 煤炭技术, 2015, 34(10): 251-253. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510095.htm
LI Chuan, YANG Bingxiong, FAN Ling, et al. Research of methane's laser detection system based on near-infrared differential absorption spectroscopy technique[J]. Coal Technology, 2015, 34(10): 251-253. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201510095.htm
|
[4] |
李志永, 谭荣清, 黄伟, 等. 傅里叶变换红外光谱技术测量甲烷气压的实验研究[J]. 中国激光, 2017, 44(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201703007.htm
LI Zhiyong, TAN Rongqing, HUANG Wei, et al. Methane pressure detection based on Fourier transform infrared spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201703007.htm
|
[5] |
樊保龙. 大尺度条件下甲烷-空气和煤尘-空气混合及爆炸特性研究[D]. 北京: 北京理工大学, 2015.
FAN Baolong. Study on Mixing and Explosion Characteristics of Methane-Air and Coal-dust-air at Large Scale[D]. Beijing: Beijing Institute of Technology, 2015.
|
[6] |
DENG Jun, CHEN Weile, WANG Weifeng, et al. Study on online detection method of methane gas in coal mine based on TDLAS technology[C]//Proceedings of the 11th International Mine Ventilation Congress, 2018(4): 318-332.
|
[7] |
WANG Zhimin, WANG Han, YU Yingchun, et al. Simulation and analysis of CH4 concentration measurement based on QCL-TDLAS[J]. IOP Conference Series Earth and Environmental Science, 2020, 568(1): 012013. DOI: 10.1088/1755-1315/568/1/012013
|
[8] |
GAO Zongli, YE Weilin, ZHENG Chuantao, et al. Wavelet-denoising technique in near-infrared methane detection based on tunable diode laser absorption spectroscopy[J]. Optoelectronics Letters, 2014(10): 299-303.
|
[9] |
张义, 康信龙, 李长吾, 等. 基于TDLAS技术的空间网格化甲烷检测方法[J]. 大连工业大学学报, 2015, 34(2): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DLQG201502016.htm
ZHANG Yi, KANG Xinlong, LI Changwu, et al. Space grid methane detection method based on TDLAS technology[J]. Journal of Dalian Polytechnic University, 2015, 34(2): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DLQG201502016.htm
|
[10] |
叶年年, 冯若尘, 田思雨, 等. 基于TDLAS的甲烷气体检测技术综述[J]. 内蒙古煤炭经济, 2019(12): 43-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT201912020.htm
YE Niannian, FENG Ruochen, TIAN Siyu, et al. Overview of methane gas detection technology based on TDLAS[J]. Inner Mongolia Coal Economy, 2019(12): 43-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT201912020.htm
|
[11] |
毕诚. 基于TDLAS的空间对射型飞机货舱火警探测硬件系统研究[D]. 天津: 中国民航大学, 2019.
BI Cheng. Research on hardware system on spatial anti-radiation fire detection of aircrafts cargo based on TDLAS[D]. Tianjin: Civil Aviation University of China, 2019.
|
[12] |
越方禹, 毛峰, 王涵, 等. 高功率半导体激光器红外缺陷发射与热效应[J]. 激光与光电子学进展, 2019, 56(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201911001.htm
YUE Fangyu, MAO Feng, WANG Han, et al. Infrared defect emission and thermal effect in high power diode lasers[J]. Laser & Optoelectronics Progress, 2019, 56(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201911001.htm
|
[13] |
彭琛. 基于光声气体检测的半导体激光器耦合技术研究[D]. 绵阳: 西南科技大学, 2012.
PENG Chen. Semiconductor Laser Coupling Technology Based on Photoacoustic Gas Detection[D]. Mianyang: Southwest University of Science and Technology, 2012.
|
[14] |
张莹, 王立洪. 基于残差的非线性自回归模型的拟合优度检验[J]. 南京大学学报(数学半年刊), 2012, 29(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SXXT201201013.htm
ZHANG Ying, WANG Lihong. Goodness-of-fit test using residuals in infinite-order nonlinear autoregressive models[J]. Journal of Nanjing University Mathematical Biquarterly, 2012, 29(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SXXT201201013.htm
|
[15] |
桂文林, 伍超标. 标准差和平均差的内在关系[J]. 统计与决策, 2004(4): 122-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200404070.htm
GUI Wenlin, WU Chaobiao. Intrinsic relationship between standard deviation and mean difference[J]. Statistics and Decision, 2004(4): 122-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC200404070.htm
|
[1] | HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157. |
[2] | LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419. |
[3] | HUI Bin, LI Jingzhen, AI Yuexia. Null Compensator Design of F/1.2 Aspherical Mirror[J]. Infrared Technology , 2019, 41(5): 423-426. |
[4] | XIANG Jiansheng, PAN Guoqing, MENG Weihua. Research on Anamorphosis of Aluminum Mirror Used in Infrared System[J]. Infrared Technology , 2017, 39(2): 147-151. |
[5] | WEI wei, CHEN Jie, ZHANG Ruolan, LIU Yunyi, TIAN Guiping. Design of Mirror Control System in Dual Mode Imaging Device with Long Line FPA Detector[J]. Infrared Technology , 2017, 39(1): 67-72. |
[6] | LI Lei, ZHANG Bao, LI Quanchao. Topology Optimization of Primary Mirror in Airborne Infrared System[J]. Infrared Technology , 2016, 38(8): 648-652. |
[7] | ZHANG Dong-ge, FU Yu-tian. Development and Application of Aluminum Mirrors in Optical System[J]. Infrared Technology , 2015, (10): 814-823. |
[8] | HUI Bin, LI Jing-zhen, HUANG Hong-bin, PEI Yun-tian. Optical Analysis of Space Two-Axis Scanning Mirror[J]. Infrared Technology , 2006, 28(9): 508-511. DOI: 10.3969/j.issn.1001-8891.2006.09.003 |
[9] | Analysis of the Imaging Rotate of the 45°Scanning Mirror[J]. Infrared Technology , 2004, 26(3): 45-48,52. DOI: 10.3969/j.issn.1001-8891.2004.03.011 |
[10] | Measurement Method and System of Parameters of Quadrantal Detector[J]. Infrared Technology , 2004, 26(2): 33-36. DOI: 10.3969/j.issn.1001-8891.2004.02.008 |