JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. 3D Point Cloud Registration Method for Substation Robot Patrol Tracks[J]. Infrared Technology , 2023, 45(6): 678-684.
Citation: JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. 3D Point Cloud Registration Method for Substation Robot Patrol Tracks[J]. Infrared Technology , 2023, 45(6): 678-684.

3D Point Cloud Registration Method for Substation Robot Patrol Tracks

More Information
  • Received Date: May 06, 2022
  • Revised Date: August 11, 2022
  • In cases where sensors cannot satisfy relevant prescribed conditions, the point cloud data composing the inspection track of a substation robot cannot be accurately matched. Therefore, a three-dimensional point cloud registration method based on infrared image feature fusion is proposed for the inspection track of a substation robot. The gradient histogram of the robot motion direction and local self-similarity description are extracted, that is, the HOG and LSS features. Both types of features are fused using a multi-feature adaptive fusion method. The key points of the fused trajectory features and optimal target trajectory pose parameters are obtained through a preliminary registration of the three-dimensional point cloud. The optimized iterative nearest-point algorithm is used to accurately register the patrol trajectory and improve the registration results of the patrol trajectory pose. The experimental results show that the feature fusion effect of the proposed method is satisfactory and can improve the edge clarity of the image. The deviation index after fusion is less than 0.2, and the registration of key points for different image sizes is accurately completed. Moreover, the inspection track after the registration is consistent with the expected track.
  • [1]
    彭向阳, 金亮, 王锐, 等. 变电站机器人智能巡检技术及应用效果[J]. 高压电器, 2019, 55(4): 223-232. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201904032.htm

    PENG Xiangyang, JIN Liang, WANG Rui, et al. Substation robot intelligent inspection technology and its application[J]. High Voltage Apparatus, 2019, 55(4): 223-232. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201904032.htm
    [2]
    郭杭, 漆钰晖, 裴凌, 等. 基于体素格尺度不变特征变换的快速点云配准方法[J]. 中国惯性技术学报, 2019, 27(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201901012.htm

    GUO Hang, QI Yuhui, PEI Ling, et al. Fast point cloud registration method based on voxel-SIFT feature[J]. Journal of Chinese Inertial Technology, 2019, 27(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201901012.htm
    [3]
    陆军, 邵红旭, 王伟, 等. 基于关键点特征匹配的点云配准方法[J]. 北京理工大学学报, 2020, 40(4): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202004009.htm

    LU Jun, SHAO Hongxu, WANG Wei, et al. Point cloud registration method based on key point extraction with small overlap[J]. Transactions of Beijing Institute of Technology, 2020, 40(4): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202004009.htm
    [4]
    田青华, 白瑞林, 李杜. 基于SHOT特征融合的散乱工件点云配准算法[J]. 小型微型计算机系统, 2019, 40(2): 275-279. DOI: 10.3969/j.issn.1000-1220.2019.02.007

    TIAN Qinghua, BAI Ruilin, LI Du. Point cloud registration algorithm for scattered workpiece based on SHOT feature fusion[J]. Journal of Chinese Computer Systems, 2019, 40(2): 275-279. DOI: 10.3969/j.issn.1000-1220.2019.02.007
    [5]
    唐志荣, 蒋悦, 苗长伟, 等基于因子分析法的三维点云配准算法[J]. 激光与光电子学进展, 2019, 56(19): 186-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201919019.htm

    TANG Zhirong, JIANG Yue, MIAO Changwei, et al Three-dimensional point cloud registration algorithm based on factor analysis[J]. Laser & Optoelectronics Progress, 2019, 56(19): 186-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201919019.htm
    [6]
    刘剑, 白迪. 基于特征匹配的三维点云配准算法[J]. 光学学报, 2018, 38(12): 240-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201812029.htm

    LIU Jian, BAI Di. 3D point cloud registration algorithm based on feature matching[J]. Acta Optica Sinica, 2018, 38(12): 240-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201812029.htm
    [7]
    Kadam P, ZHANG M, LIU S, et al. R-PointHop: a green, accurate, and unsupervised point cloud registration method[J]. IEEE Transactions on Image Processing, 2022, 31(1): 1-10.
    [8]
    FAN Jingjing, MA Liqun, ZOU Zhi. A registration method of point cloud to CAD model based on edge matching[J]. Optik, 2020, 219(10): 165-177.
    [9]
    曾俊飞, 杨海清, 吴浩. 面向三维重建的自适应列文伯格-马夸尔特点云配准方法[J]. 计算机科学, 2020, 47(3): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202003024.htm

    ZENG Junfei, YANG Haiqing, WU Hao. Adaptive Levenberg-Marquardt cloud registration method for 3D reconstruction[J]. Computer Science, 2020, 47(3): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202003024.htm
    [10]
    王建, 姚吉利, 赵雪莹, 等. 一种基于线基元的单张影像与点云配准方法[J]. 测绘科学, 2020, 45(2): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202002012.htm

    WANG Jian, YAO Jili, ZHAO Xueying, et al. A registration method of single image and point clouds based on line primitive[J]. Science of Surveying and Mapping, 2020, 45(2): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202002012.htm
    [11]
    鲁铁定, 袁志聪, 郑坤. 结合尺度不变特征的Super 4PCS点云配准方法[J]. 遥感信息, 2019, 34(5): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201905005.htm

    LU Tieding, YUAN Zhicong, ZHENG Kun. Super 4PCS point cloud registration algorithm combining scale invariant features[J]. Remote Sensing Information, 2019, 34(5): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201905005.htm
    [12]
    马烜, 邹金慧. 基于三维块匹配与改进Top-hat的红外图像目标检测方法[J]. 探测与控制学报, 2019, 41(6): 83-87, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX201906016.htm

    MA Xuan, ZOU Jinhui. 3-D block-matching filtering and improved top-hat method for infrared image target detection[J]. Journal of Detection & Control, 2019, 41(6): 83-87, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX201906016.htm
    [13]
    李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84.

    LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79-84.
    [14]
    彭蹦, 杨耀权, 江鹏宇. 一种多模式融合的激光点云配准算法[J]. 激光与红外, 2020, 50(4): 396-402. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202004002.htm

    PENG Beng, YANG Yaoquan, JIANG Pengyu. A multi-mode fusion laser point cloud registration algorithm[J]. Laser & Infrared, 2020, 50(4): 396-402. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202004002.htm
    [15]
    张永明, 王克威, 张启兴, 等. 一种基于红外图像特征融合的高温铝液模拟泄漏监测算法[J]. 安全与环境学报, 2020, 20(2): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202002016.htm

    ZHANG Yongming, WANG Kewei, ZHANG Qixing, et al. Simulated leakage monitoring algorithm for high-temperature molten aluminum based on the infrared image feature fusion[J]. Journal of Safety and Environment, 2020, 20(2): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202002016.htm
  • Related Articles

    [1]XU Shiwen, WANG Heng, ZHANG Hua, PANG Jie. Human Fall Detection Method Based on Key Points in Infrared Images[J]. Infrared Technology , 2021, 43(10): 1003-1007.
    [2]ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.
    [3]A Method of Object Tracking Based on Feature Point Matching[J]. Infrared Technology , 2016, 38(7): 597-601.
    [4]ZHAO De-li, ZHU You-pan, LI Yan, ZENG Bang-ze, PAN Chao, LUO Lin, WU Cheng. Investigation on Infrared and Low Light Level Image Registration Algorithm Based on Point Feature and Freeman Chain Code[J]. Infrared Technology , 2015, (6): 467-471.
    [5]ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826.
    [6]YU Hong-sheng, JIN Wei-qi. SIFT Key-points Self-adaptive Extraction Algorithm for Video Images[J]. Infrared Technology , 2013, (12): 768-772.
    [7]YANG Li, YANG Hua. The Key Techniques and Applications of Infrared False Target[J]. Infrared Technology , 2006, 28(9): 531-534. DOI: 10.3969/j.issn.1001-8891.2006.09.009
    [8]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005
    [9]Study on the Key Techniques of the Imaging Infrared Guidance for AAM[J]. Infrared Technology , 2003, 25(4): 45-48. DOI: 10.3969/j.issn.1001-8891.2003.04.011
    [10]Modification of the Infrared Point Measurement for Temperature[J]. Infrared Technology , 2002, 24(3): 49-51,55. DOI: 10.3969/j.issn.1001-8891.2002.03.013
  • Cited by

    Periodical cited type(2)

    1. 邢志坤. 基于LabVIEW的变电站移动机器人轨迹跟踪虚拟仿真系统设计. 自动化与仪表. 2024(07): 67-71 .
    2. 李辉,余大成,陈耀. 基于OWA算子和CWAA算子的变电站巡视周期优化. 广西电力. 2024(05): 50-54 .

    Other cited types(1)

Catalog

    Article views (125) PDF downloads (40) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return