Citation: | NIU Qun, SHI Lixia, WANG Jinsong, TANG Zhuo. Low-light Image Enhancement Based on Detail Preservation and Brightness Fusion[J]. Infrared Technology , 2024, 46(10): 1162-1171. |
Images captured by complementary metal-oxide semiconductor (CMOS) cameras under low-light environments have problems, including low contrast, high noise, blurred details, and insufficient enhancement algorithms. Although CMOS cameras can improve image brightness, they do not consider how to retain the detailed information of the original image. Therefore, this paper proposes a detail-preserving low-light image enhancement method. First, each channel in the original low-light image was processed using an adaptive filter to improve the effect of noise on the image. Subsequently, a detail layer and a basic layer are obtained from the filtered image. The detail layer is used to preserve the texture of the image, and the basic layer is used to enhance its brightness. Moreover, the detail layer is obtained via coarse illumination and light components, whereas the basic layer brightness enhancement is obtained using the alpha algorithm to fuse the original image, gamma correction result, and gamma priori correction result. Finally, the luminance channels of the detailed and basic layers are fused to obtain an enhanced image. The experimental results showed that the average gradient and information entropy of the fused detailed image were significantly improved. In addition, among the five selected methods, the SSIM index was higher than those of other algorithms, indicating less distortion in the enhanced images. Good results were achieved for both the BRISQUE and PSNR indicators.
[1] |
WANG L, WU B, WANG X, et al. Endoscopic image luminance enhancement based on the inverse square law for illuminance and retinex[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18(4): e2396.
|
[2] |
朱明秀. 视频图像处理技术在安防行业的应用[J]. 电子技术与软件工程, 2020(2): 155-156.
ZHU M X. The application of video image processing technology in the security industry[J]. Electronic Technology & Software Engineering, 2020(2): 155-156.
|
[3] |
曹行健, 张志涛, 孙彦赞, 等. 面向智慧交通的图像处理与边缘计算[J]. 中国图象图形学报, 2022, 27(6): 1743-1767.
CAO X J, ZHANG Z T, SUN Y Z, et al. The review of image processing and edge computing for intelligent transportation system[J]. Journal of Image and Graphics, 2022, 27(6): 1743-1767.
|
[4] |
马晓东. 数字图像处理技术在智能交通中的应用[J]. 电脑知识与技术, 2022, 18(21): 123-124.
MA X D. Application of digital image processing technology in intelligent transportation[J]. Computer Knowledge and Technology, 2022, 18(21): 123-124.
|
[5] |
WANG W, WU X, YUAN X, et al. An experiment-based review of low-light image enhancement methods[J]. IEEE Access, 2020, 8: 87884-87917. DOI: 10.1109/ACCESS.2020.2992749
|
[6] |
扈佃海, 吕绪良, 文刘强. 一种改进的直方图均衡化图像增强方法[J]. 光电技术应用, 2012, 27(3): 65-68.
HU D H, LV X L, WEN L Q. An improved method of histogram equalization image enhancement[J]. Electro-Optic Technology Application, 2012, 27(3): 65-68.
|
[7] |
黄辉先, 陈凡浩. 基于注意力机制和Retinex的低照度图像增强方法[J]. 激光与光电子学进展, 2020, 57(20): 53-60.
HUANG H X, CHEN F H. Low-illumination image enhancement method based on attention mechanism and Retinex[J]. Laser & Optoelectronics Progress, 2020, 57(20): 53-60.
|
[8] |
何锦成, 韩永成, 张闻文, 等. 基于通道校正卷积的真彩色微光图像增强[J]. 兵工学报, 2023, 44(6): 1643-1654.
HE J C, HAN Y C, ZHANG W W, et al. True color low-light image enhancement based on channel-calibrated convolution[J]. Acta Armamentarii, 2023, 44(6): 1643-1654.
|
[9] |
Lore K G, Akintayo A, Sarkar S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662. DOI: 10.1016/j.patcog.2016.06.008
|
[10] |
赵兴运, 孙帮勇. 融合注意力机制和上下文信息的微光图像增强[J]. 中国图象图形学报, 2022, 27(5): 1565-1576.
ZHAO X Y, SUN B Y. An attention mechanism and contextual information based low-light image enhancement method[J]. Journal of Image and Graphics, 2022, 27(5): 1565-1576.
|
[11] |
刘嵘侃, 邢德智, 唐昭焕, 等. 低噪声CMOS图像传感器技术研究综述[J]. 半导体光电, 2020, 41(6): 768-773.
LIU R K, XING D Z, TANG Z H, et al. An overview of low noise CMOS image sensor technique[J]. Semiconductor Optoelectronics, 2020, 41(6): 768-773.
|
[12] |
GAO Y, HU H M, LI B, et al. Naturalness preserved nonuniform illumination estimation for image enhancement based on retinex[J]. IEEE Transactions on Multimedia, 2017, 20(2): 335-344.
|
[13] |
LI C, TANG S, YAN J, et al. Low-light image enhancement via pair of complementary gamma functions by fusion[J]. IEEE Access, 2020, 8: 169887-169896. DOI: 10.1109/ACCESS.2020.3023485
|
[14] |
杨斌. 基于FPGA的头戴显示器视频图像处理系统设计与实现[D]. 成都: 电子科技大学, 2021.
YANG B. Design and Implementation of Video Image Processing System for Head-mounted Display Based on FPGA[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
[15] |
陈清江, 顾媛, 李金阳. 双分支金字塔网络的微光图像增强算法[J]. 液晶与显示, 2022, 37(3): 395-404.
CHEN Q J, GU Y, LI J Y. Low-light level image enhancement algorithm based on double-branch pyramid model[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 395-404.
|
[16] |
杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7): 1021-1035.
YANG Y C, LI J, WANG Y P. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science & Technology, 2018, 12(7): 1021-1035.
|
[17] |
Zuiderveld K. Contrast limited adaptive histogram equalization[J]. Graphics Gems, 1994: 474-485.
|
[18] |
Petro A B, Sbert C, Morel J M. Multiscale retinex[J]. Image Processing On Line, 2014: 71-88. https://doi.org/10.5201/ipol.2014.107.
|
[19] |
GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.
|
[20] |
DONG X, PANG Y, WEN J. Fast efficient algorithm for enhancement of low lighting video[C]//IEEE International Conference on Multimedia and Expo, 2011: DOI: 10.1109/ICME.2011.6012107.
|
[21] |
YING Z, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[J]. arXiv preprint arXiv, 1711.00591, 2017.
|
[22] |
Loh Y P, Chan C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42.
|
[23] |
JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
|
[24] |
Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.
|
[25] |
谢小甫, 周进, 吴钦章. 一种针对图像模糊的无参考质量评价指标[J]. 计算机应用, 2010, 30(4): 921-924.
XIE X F, ZHOU J, WU Q Z. No-reference quality index for image blur[J]. Journal of Computer Applications, 2010, 30(4): 921-924.
|
[26] |
ZHOU D, QIAN Y, MA Y, et al. Low illumination image enhancement based on multi-scale cycle GAN with deep residual shrinkage[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 2383-2395.
|
[27] |
刘柯, 李旭健. 水下和微光图像的去雾及增强方法[J]. 光学学报, 2020, 40(19): 73-85.
LIU K, LI X J. De-hazing and enhancement methods for underwater and low-light images[J]. Acta Optica Sinica, 2020, 40(19): 73-85.
|
[1] | LIAO Guangfeng, GUAN Zhiwei, CHEN Qiang. An Improved Dual Discriminator Generative Adversarial Network Algorithm for Infrared and Visible Image Fusion[J]. Infrared Technology , 2025, 47(3): 367-375. |
[2] | YUAN Hongchun, ZHANG Bo, CHENG Xin. Underwater Image Enhancement Algorithm Combining Transformer and Generative Adversarial Network[J]. Infrared Technology , 2024, 46(9): 975-983. |
[3] | LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671. |
[4] | DI Jing, REN Li, LIU Jizhao, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Three-branch Adversarial Learning and Compensation Attention Mechanism[J]. Infrared Technology , 2024, 46(5): 510-521. |
[5] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[6] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[7] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[8] | LI Yunhong, LIU Yudong, SU Xueping, LUO Xuemin, YAO Lan. Review of Infrared and Visible Image Registration[J]. Infrared Technology , 2022, 44(7): 641-651. |
[9] | HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46. |
[10] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |