LI Bo, CHEN Junwei, LIU Zhuoyi, BAI Jie, FAN Lei, ZHANG Cong, GUO Jufu. Thickness Evaluation of Weather Resistant Coatings Based on Lock-in Thermography[J]. Infrared Technology , 2022, 44(3): 303-309.
Citation: LI Bo, CHEN Junwei, LIU Zhuoyi, BAI Jie, FAN Lei, ZHANG Cong, GUO Jufu. Thickness Evaluation of Weather Resistant Coatings Based on Lock-in Thermography[J]. Infrared Technology , 2022, 44(3): 303-309.

Thickness Evaluation of Weather Resistant Coatings Based on Lock-in Thermography

More Information
  • Received Date: June 29, 2021
  • Revised Date: August 09, 2021
  • Owing to the influence of environmental temperature, pollution, moisture, and other climatic factors, metal components of power transmission and transformation systems are prone to premature failure. Generally, weather-resistant materials are coated on metal components. In view of the shortcomings of the existing methods for measuring the coatings, this study uses lock-in thermographic technology to evaluate the thickness. First, the principle and repeatability of the method were verified using standard coating specimens. The results show that the method is reliable and stable for the evaluation of the coating thickness. Subsequently, a wedged weather-resistant coating sample was tested. The error in the measured thickness was within ±5% of the actual value. Therefore, the phase image can be used to effectively measure and evaluate the thickness and uniformity of weather-resistant coatings.
  • [1]
    陈高汝, 陈展超, 钟文贵, 等. 电网金属部件反腐保护层的便携式电镀设备设计及技术应用[J]. 科技与创新, 2020(1): 157-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX202001065.htm

    CHEN Gaonu, CHEN Zhanchao, ZHONG Wengui, et al. Design and application of portable electroplating equipment for anti-corruption protective layer of power grid metal parts[J]. Science and Technology & Innovation, 2020(1): 157-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX202001065.htm
    [2]
    王平, 孙心利, 马东伟, 等. 输变电设备大气腐蚀情况调查与分析[J]. 腐蚀科学与防护技术, 2012, 24(6): 525-526. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201206023.htm

    WANG Ping, SUN Xinli, MA Dongwei, et al. Investigation and analysis on atmospheric corrosion of power transmission and transformation equipment[J]. Corrosion Science and Protection Technology, 2012, 24(6): 525-526. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201206023.htm
    [3]
    陈云, 强春媚, 王国刚, 等. 输电铁塔的腐蚀与防护[J]. 电力建设, 2010, 31(8): 55-58. DOI: 10.3969/j.issn.1000-7229.2010.08.013

    CHEN Yun, QIANG Chunmei, WANG Guogang, et al. Corrosion and protection of transmission towers[J]. Electric Power Construction, 2010, 31(8): 55-58. DOI: 10.3969/j.issn.1000-7229.2010.08.013
    [4]
    李文翰, 尹学涛, 周学杰, 等. 电网输变电设备钢结构和镀锌构件的大气腐蚀与防护措施[J]. 材料保护, 2018, 51(10): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201810027.htm

    LI Wenhan, YIN Xuetao, ZHOU Xuejie, et al. Summary on atmospheric and protection measure of steel componets and galvanized componets for transmission and distribution projects[J]. Material Protection, 2018, 51(10): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201810027.htm
    [5]
    刘波, 李艳红, 冯立春, 等. 锁相红外热成像技术在无损检测领域的应用[J]. 无损探伤, 2006, 30(3): 12-15. DOI: 10.3969/j.issn.1671-4423.2006.03.004

    LIU Bo, LI Yahong, FENG Lichun, et al. Application of phase infrared thermal iimaging technology in nondestructive testing[J]. Nondestructive Test, 2006, 30(3): 12-15. DOI: 10.3969/j.issn.1671-4423.2006.03.004
    [6]
    李根, 赵翰学, 范瑾, 等. 锁相红外热像检测缺陷的定量方法[J]. 无损检测, 2017, 39(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201706001.htm

    LI Gen, ZHAO Hanxue, FAN Jin, et al. A defect quantification method by lock-in thermography[J]. Nondestructive Testing, 2017, 39(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201706001.htm
    [7]
    汪子君, 刘俊岩, 戴景民, 等. 锁相红外检测中相位检测方法[J]. 无损检测, 2008, 30(7): 418-421. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200807009.htm

    WANG Zijun, LIU Junyan, DAI Jingmin, et al. Study of phase detection in lock-in thermography nondestructive testing[J]. Nondestructive Testing, 2008, 30(7): 418-421. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200807009.htm
    [8]
    Bai W, Wong B S. Evaluation of defects in composite plate under connective environments using lock-in thermography[J]. Measurement Science and Technology, 2001, 12(2): 142-150. DOI: 10.1088/0957-0233/12/2/303
    [9]
    赵延广, 郭杳林, 任明法. 基于锁相红外热成像理论的复合材料网格加筋结构的无损检测[J]. 复合材料学报, 2011, 28(1): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201101035.htm

    ZHAO Tingguang, GUO Xinlin, REN Mingfa. Lock-in thermography method for the NDT of composite grid stiffened structures[J]. Acta Mater Compos Sin, 2011, 28(1): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201101035.htm
    [10]
    刘俊岩, 戴景民, 王扬. 红外锁相法热波检测技术及缺陷深度测量[J]. 光学精密工程, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htm

    LIU Junyan, DAI Jingmin, WANG Yang. Thermal wave detection and defect depth measurement based on lock-in thermography[J]. Optics and Precision Engineering, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htm
    [11]
    江海军, 盛涛, 陈力, 等. 碳纤维蜂窝结构的锁相红外自动化检测系统研制[J]. 无损检测, 2020, 42(6): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202006014.htm

    JIANG Haijun, SHENG Tao, CHEN Li, et al. Development of lock-in infrared automatic detection system for carbon fiber honeycomb structure[J]. Nondestructive Testing, 2020, 42(6): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202006014.htm
    [12]
    陈林, 杨立, 范春利, 等. 红外锁相无损检测及其数值模拟[J]. 红外技术, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013

    CHEN Lin, YANG Li, FAN Chunli, et al. Numerical simulation of lock-in thermography for infrared nondestructive testing[J]. Infrared Technology, 2013, 35(2): 119-122. http://hwjs.nvir.cn/article/id/hwjs201302013
    [13]
    张金玉, 马永超. 基于红外锁相法的涂层脱粘缺陷检测与识别[J]. 红外技术, 2016, 38(10): 894-898. DOI: 10.11846/j.issn.1001_8891.201610015

    ZHANG Jinyu, MA Yongchao. Detection and recognition of the debonding defect of coating based on lock-in thermography[J]. Infrared Technology, 2016, 38(10): 894-898. DOI: 10.11846/j.issn.1001_8891.201610015
  • Related Articles

    [1]ZHANG Miao, WANG Xiaojun, LEI Jingfa, ZHAO Ruhai, LI Yongling. Phase-Error Correction Based on Multifrequency Heterodyning[J]. Infrared Technology , 2025, 47(7): 859-868.
    [2]GAO Jun, CHEN Jian, TIAN Xiaoyu. Ensemble-learning-based Cloud Phase Classification Method for FengYun-4 Remote Sensing Images[J]. Infrared Technology , 2020, 42(1): 68-74.
    [3]LI Feng, DONG Feng, FENG Qi, WANG Wenxiu. A Subpixel Image Shift Detection Method Based on Improved Phase Correlation Algorithm[J]. Infrared Technology , 2018, 40(8): 805-811.
    [4]WAN Anjun, LIN Yuming, ZHAO Xunjie. Research Status of Phase-Height Mapping System Calibration in Phase Measurement Profilometry[J]. Infrared Technology , 2018, 40(7): 701-706.
    [5]WU Jianning, SHI Manhong, XING Zhi. Image Denoising Using Magnitude-phase of the Undecimated Dual-tree Complex Wavelet Transform[J]. Infrared Technology , 2018, 40(7): 647-653.
    [6]LI Yongjun, XIAO Junfeng, ZHU Lichun, ZHANG Jiong, GAO Sifeng, TANG Wenshu, NAN Qing. Applications of the Infrared Thermal Wave Technology in Thermal Barrier Coating Thickness Testing[J]. Infrared Technology , 2017, 39(7): 669-674.
    [7]ZHANG Jinyu, MA Yongchao. Detection and Recognition of the Debonding Defect of Coating Based on Lock-in Thermography[J]. Infrared Technology , 2016, 38(10): 894-898.
    [8]YUE Chang-jin, GAO Fang-jun, YAN Xin-xin. Phase Control Technique Study Based on Infrared Rosette Scanning[J]. Infrared Technology , 2014, (8): 656-660.
    [9]LIU Zhao-ying, ZHOU Fu-gen, BAI Xiang-zhi. Phase Preserving Based Infrared Image Preprocessing Method[J]. Infrared Technology , 2011, 33(11): 635-638. DOI: 10.3969/j.issn.1001-8891.2011.11.004
    [10]TIAN Yu-peng, ZHOU Ke-yin, ZHAO Ying-ying, YU Sheng-lin. Detecting Water in Honeycomb Structure by Using Pulsed Phase Thermography[J]. Infrared Technology , 2006, 28(10): 615-619. DOI: 10.3969/j.issn.1001-8891.2006.10.015
  • Cited by

    Periodical cited type(1)

    1. 付启银. 基于视觉传达技术的可见光与红外图像融合方法. 激光杂志. 2025(04): 128-133 .

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (31) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return