FU Yunpeng, FAN Junwei, YANG Weiying, YUAN Jie, LIU Meinan, ZHANG Xiangrui. Experimental Analysis of Infrared Cooling Characteristics of Wall-attached Nozzle[J]. Infrared Technology , 2023, 45(5): 513-520.
Citation: FU Yunpeng, FAN Junwei, YANG Weiying, YUAN Jie, LIU Meinan, ZHANG Xiangrui. Experimental Analysis of Infrared Cooling Characteristics of Wall-attached Nozzle[J]. Infrared Technology , 2023, 45(5): 513-520.

Experimental Analysis of Infrared Cooling Characteristics of Wall-attached Nozzle

More Information
  • Received Date: November 17, 2022
  • Revised Date: January 30, 2023
  • Aiming at the problem of infrared radiation in the 8-14 μm band of ships, a water curtain spray method was adopted to attenuate the infrared radiation intensity of a target, and an infrared thermal imager was employed to build a wall attached nozzle test system. Through comparative design experiments, the influences of different spraying distances, total spray flow rates, and temperatures of the steel plates on the infrared cooling characteristics of the wall nozzles were analyzed. The test results show that when the target steel plate is in the hollow area, and the boundary between the hollow area and the coverage area, the infrared cooling rates are 2.03 and 3.31℃/min, respectively. When the target steel plate was in the coverage area, there were non-overlapping and overlapping areas in the spray. The maximum cooling rate of the non-overlapping area was 6.18℃/min, and the cooling rate of the overlapping area under the same radius was 6.54℃/min. The infrared cooling time in the overlapping zone was 40 s, which was 32 s shorter than that in the non-overlapping zone. Moreover, an increase in the total spray flow resulted in a significant increase in cooling of the steel plate. The higher the initial temperature of the steel plate, the higher the cooling rate of the wall nozzle. In addition, the temperature difference between the steel plates inside and outside the water curtain can reach up to 8.49℃. Studies have shown that the water curtain spray formed by a wall-attached nozzle can effectively cover the surface temperature of the steel plate, reduce the infrared detectability of the ship surface, and realize water curtain spray stealth. These results provide a technical reference for improving the infrared stealth performance of ships.
  • [1]
    李辉, 牛国贤, 罗刚, 等. 细水雾红外隐身技术的仿真分析及其试验研究[J]. 液压与气动, 2017(6): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201706003.htm

    LI Hui, NIU Guoxian, LUO Gang, et al. Simulation analysis and experimental research of water mist infrared stealth technology[J]. Hydraulics & Pneumatics, 2017(6): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201706003.htm
    [2]
    李艇, 付云鹏, 杨卫英. 水面舰船红外隐身总体设计分析[J]. 红外技术, 2020, 42(2): 134-138. http://hwjs.nvir.cn/article/id/hwjs202002005

    LI Ting, FU Yunpeng, YANG Weiying. Analysis of the overall design of infrared stealth for surface ships[J]. Infrared Technology, 2020, 42(2): 134-138. http://hwjs.nvir.cn/article/id/hwjs202002005
    [3]
    袁江涛, 杨立, 陈翾, 等. 现代舰船红外辐射及其控制策略分析[J]. 激光与红外, 2006(10): 943-947. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200610008.htm

    YUAN Jiangtao, YANG Li, CHEN Yi, et al. Analysis of infrared radiation of modern ships and its control strategy[J]. Laser and Infrared, 2006(10): 943-947. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200610008.htm
    [4]
    高山. 水面战斗舰艇隐身设计浅探[J]. 船舶, 2008, 12(6): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200806005.htm

    GAO Shan. Stealth design for surface combatant ship[J]. Ship, 2008, 12(6): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200806005.htm
    [5]
    王振, 朱森林, 刘银水, 等. 旋流式复合喷头红外降温特性试验分析[J/OL]. 中国舰船研究, Doi: 10.19693/j.issn.1673-3185.02324.

    WANG Z, ZHU S L, LIU Y S, et al. Experimental analysis of infrared cooling characteristics of swirl atomizer composite nozzle[J/OL]. Chinese Journal of Ship Research, Doi: 10.19693/j.issn.1673-3185.02324.
    [6]
    赵世明, 陈翾. 舰船水雾红外消光的性能优化[J]. 红外技术, 2017, 39(6): 553-557. http://hwjs.nvir.cn/article/id/hwjs201706013

    ZHAO Shiming, CHEN Xuan. Performance optimization of infrared extinction of ship water fog[J]. Infrared Technology, 2017, 39(6): 553-557. http://hwjs.nvir.cn/article/id/hwjs201706013
    [7]
    刘喜元, 谢承利, 王丹, 等. 舰船细水雾红外隐身技术及其试验研究[J]. 中国舰船研究, 2014, 9(6): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201406013.htm

    LIU Xiyuan, XIE Chengli, WANG Dan, et al. Infrared stealth technology of ship water mist and its experimental research[J]. Chinese Ship Research, 2014, 9(6): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201406013.htm
    [8]
    杜永成, 杨立, 张士成. 细水雾遮蔽红外辐射的数值分析[J]. 红外与激光工程, 2013, 42(8): 1967-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201308004.htm

    DU Yongcheng, YANG Li, ZHANG Shicheng. Numerical analysis of water mist shielding infrared radiation[J]. Infrared and Laser Engineering, 2013, 42(8): 1967-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201308004.htm
    [9]
    DU Yongcheng, YANG Li. Water mist attenuates guided laser based on Monte Carlo method[J]. Optik - International Journal for Light and Electron Optics, 2014, 125(2): 727-731. http://www.onacademic.com/detail/journal_1000036210955110_cfe3.html
    [10]
    刘晓敏. 舰船水雾水膜红外隐身技术的研究[D]. 武汉: 华中科技大学, 2019.

    LIU Xiaomin. Research on Infrared Stealth Technology of Ship Water Fog and Water Film[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    [11]
    万新斌, 于姝雯. 舰船水幕系统设计方法研究[J]. 舰船科学技术, 2019, 41(8): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201915014.htm

    WAN Xinbin, YU Shuwen. Research on design method of ship water curtain system[J]. Ship Science and Technology, 2019, 41(8): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201915014.htm
    [12]
    Hiroki Gonome, Taichi Nagao, Yuto Takagi, et al. Protection from thermal radiation of hazardous fires: Optimizing microscale droplet size in mist barriers using radiative transfer analysis[J]. Process Safety and Environmental Protection, 2020, 143: 114-120. http://www.sciencedirect.com/science/article/pii/s0957582020315846
    [13]
    李慧子, 朱森林, 刘银水. 气助式复合喷头红外降温特性试验分析[J]. 船海工程, 2020, 49(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC202006002.htm

    LI Huizi, ZHU Senlin, LIU Yinshui. Experimental analysis of infrared cooling characteristics of air-assisted composite sprinklers[J]. Ship and Sea Engineering, 2020, 49(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC202006002.htm
    [14]
    Gonome Hiroki, Takagi Yuto, Nagao Taichi, et al. Effect of soot on thermal radiation shielding performance of water mist[J]. Fire Safety Journal, 2021, 123: 103363. http://www.sciencedirect.com/science/article/pii/S0379711221001041
    [15]
    付健, 赵建辉, 李帆, 等. 基于水幕的舰船红外干扰策略研究[J]. 应用光学, 2021, 42(3): 404-412.

    FU Jian, ZHAO Jianhui, LI Fan, et al. Research on infrared interference strategy of ship based on water screen[J]. Applied Optics, 2021, 42(3): 404-412.
    [16]
    郭娜, 刘思瑶, 须晖, 等. 基于图像处理的雾滴粒径检测方法[J]. 沈阳农业大学学报, 2021, 52(1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY202101012.htm

    GUO Na, LIU Siyao, XU Hui, et al. A method for detecting fog droplet size based on image processing[J]. Journal of Shenyang Agricultural University, 2021, 52(1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY202101012.htm
    [17]
    卢辉, 王向伟, 吕绪良, 等. 水雾的热红外伪装性能分析[J]. 红外技术, 2009, 31(11): 646-649. DOI: 10.3969/j.issn.1001-8891.2009.11.007

    LU Hui, WANG Xiangwei, LU Xuliang, et al. Analysis of Thermal Infrared Camouflage Performance of Water Mist[J]. Infrared Technology, 2009, 31(11): 646-649. DOI: 10.3969/j.issn.1001-8891.2009.11.007
  • Related Articles

    [1]SONG Shanshan, ZHAI Xuping. Improved Infrared Anomaly Target Detection Algorithm Based on Single Gaussian Model[J]. Infrared Technology , 2021, 43(9): 885-888,894.
    [2]WU Tianquan, GUO Jing, GOU Xiantai, HUANG Qinqin, ZHOU Weichao. Method of Detecting Substation Equipment in Infrared Images Based on Improved Gaussian Convolution Kernel[J]. Infrared Technology , 2021, 43(3): 230-236.
    [3]YU Xiaoming, LI Siying, SHI Shengnan. An Improved Algorithm for Moving Target Detection Using a Gaussian Mixture with Three-frame Difference[J]. Infrared Technology , 2019, 41(3): 256-261.
    [4]CHEN Jiali, ZHANG Zhiyong. Velocity Estimation of Precision Pointing Mechanisms Based on Adaptive Kalman Filter[J]. Infrared Technology , 2018, 40(4): 388-394.
    [5]FU Dong-mei, TANG Sheng-bo. Infrared Moving Object Detection Based on Improved Gaussian Mixture Model[J]. Infrared Technology , 2014, (8): 628-632.
    [6]XU Xiang-jun, WANG Sheng-peng, JI Qing-chun, LIU Dong-fang, QIAN Wei-dong, YU Jie, YAN Ya-jing. Insulator Infrared Image Recognition Method Based on Gaussian Scale-space and GHT[J]. Infrared Technology , 2014, (7): 596-599.
    [7]GAO Xiao-dan, WEI Wan-hua. An Adaptive Enhancement Algorithm Based on Gaussian Distribution for Infrared Image[J]. Infrared Technology , 2014, 36(5): 381-383.
    [8]Application of Gaussian Quadrics Fitting in the Infrared Point Targets Detection in Sky Background[J]. Infrared Technology , 2013, (10): 638-641.
    [9]CHEN Wei-zhen, ZHANG Chun-hua, ZHOU Xiao-dong. Study of Star-sky Image Background Characteristics Based on Local-histogram Gaussian Fitting Method[J]. Infrared Technology , 2008, 30(4): 230-233. DOI: 10.3969/j.issn.1001-8891.2008.04.012
    [10]CAO Zhan-hui, LI Yan-jun, ZHANG Ke, WU Pan-long. A Novel Linear Edge Extraction Method Based on Gaussian Function[J]. Infrared Technology , 2006, 28(4): 207-209. DOI: 10.3969/j.issn.1001-8891.2006.04.006
  • Cited by

    Periodical cited type(3)

    1. 耿利红,饶启超,段燕波,刘湘德,迟国春. HOT器件用旋转式斯特林制冷机数值模拟及实验研究. 真空与低温. 2025(02): 239-247 .
    2. 张利明,李艳红,冯志攀,宋淑芳,付志凯,王冠,张磊. 高工作温度碲镉汞红外探测器杜瓦结构研究. 激光与红外. 2024(07): 1081-1085 .
    3. 饶启超,耿利红,刘志勇,李建国. 斯特林制冷机热真空环境散热设计与分析. 红外. 2024(11): 28-33 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return