SUN Jianbo, WANG Lijie, MA Jihui, GAO Wei. Photovoltaic Module Fault Detection Based on Improved YOLOv5s Algorithm[J]. Infrared Technology , 2023, 45(2): 202-208.
Citation: SUN Jianbo, WANG Lijie, MA Jihui, GAO Wei. Photovoltaic Module Fault Detection Based on Improved YOLOv5s Algorithm[J]. Infrared Technology , 2023, 45(2): 202-208.

Photovoltaic Module Fault Detection Based on Improved YOLOv5s Algorithm

More Information
  • Received Date: May 22, 2022
  • Revised Date: June 23, 2022
  • Infrared fault images have the limitations of a low recognition accuracy and low detection rate in a PV module inspection task using a UAV. To address these issues, a feature enhanced YOLO v5s fault detection algorithm is proposed. First, the loss function is optimized, the original regression loss calculation method is changed from GIOU to EIOU, and the confidence loss balance coefficient is adjusted adaptively to improve the model training. The InRe feature enhancement module is then added before each detection layer to enhance the ability of the target feature extraction by enriching the feature expression. Finally, comparative experiments are conducted using the infrared photovoltaic dataset created in this study. The experimental results show that the detection mAP of our method is 92.76%, whereas the detection speed is 42.37 FPS. The mean average precisions of the hot spot and component falling off were 94.85% and 90.67%, respectively, which can fully meet the requirements of the automatic inspection of the UAV.
  • [1]
    杨店飞, 郭宇杰, 沈桂鹏. 基于BP神经网络的光伏组件故障类型诊断[J]. 智慧电力, 2016, 44(2): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDJ201602006.htm

    YANG Dianfei, GUO Yujie, SHEN Guipeng. Fault type diagnosis of photovoltaic module based on BP neural network[J]. Smart Power, 2016, 44(2): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDJ201602006.htm
    [2]
    李大勇, 陈如亮, 崔岩, 等. 基于Pspice的光伏组件热斑现象仿真[J]. 哈尔滨工业大学学报, 2006, 38(11): 1888-1892, 1897. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200611018.htm

    LI Dayong, CHEN Ruliang, CUI Yan, et al. A research of hot spot on PV module with Pspice[J]. Journal of Harbin Institute of Technology, 2006, 38(11): 1888-1892, 1897. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200611018.htm
    [3]
    YU Ruei Tzeng, Chia che Ho, Ming Hwa Sheu, et al. Application of thermal camera in PV plants shelter detection[C]//2017 IEEE International Conference on Consumer Electronics, 2017: 411-412.
    [4]
    时亚涛, 戴芳, 杨畅民. 太阳能光伏电池缺陷检测[J]. 电子测量与仪器学报, 2020, 34(4): 157-164. https://cdmd.cnki.com.cn/Article/CDMD-10561-1019621693.htm

    SHI Yatao, DAI Fang, YANG Changming. Defect detection of solar photovoltaic cell[J]. Journal of Electronic Measurement and Instrument, 2020, 34(4): 157-164. https://cdmd.cnki.com.cn/Article/CDMD-10561-1019621693.htm
    [5]
    毛峡, 石天朋. 光伏热斑图像有效区域分割算法研究[J]. 太阳能学报, 2018, 39(5): 1270-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201805014.htm

    MAO Xia, SHI Tianming. Research on effective region segmentation algorithm of photovoltaic hot spot image[J]. Acta Energiae Solaris Sinica, 2018, 39(5): 1270-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201805014.htm
    [6]
    LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
    [7]
    Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
    [8]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
    [9]
    REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
    [10]
    CAI Z, Vasconcelos N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
    [11]
    WEI S, LI X, DING S, et al. Hotspots infrared detection of photovoltaic modules based on Hough line transformation and faster-RCNN approach[C]//2019 6th International Conference on Control, Decision and Information Technologies, 2019: 1266-1271.
    [12]
    Bartler A, Mauch L, Yang B, et al. Automated detection of solar cell defects with deep learning[C]//2018 26th European Signal Processing Conference, 2018: 2035-2039.
    [13]
    程起泽, 陈泽华, 张雲钦, 等. 基于CNN-LSTM的太阳能光伏组件故障诊断研究[J]. 电子技术应用, 2020, 46(4): 66-70.

    CHENG Qize, CHEN Zehua, ZHANG Yunqin, et al. Research on fault diagnosis of solar photovoltaic module based on CNN-LSTM[J]. Application of Electronic Technology, 2020, 46(4): 66-70.
    [14]
    ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[EB/OL]. [2021-01-20]. https://doi.org/10.48550/arXiv.2101.08158.
    [15]
    Cipolla R, Gal Y, Kendall A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7482-7491.
    [16]
    Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[EB/OL]. [2016-08-23]. https://doi.org/10.48550/arXiv.1602.07261.
  • Cited by

    Periodical cited type(20)

    1. 项新建,汤卉,肖家乐,王世乾,张颖超,王磊. 基于多尺度特征融合SSDLite的光伏组件缺陷检测. 太阳能学报. 2025(01): 669-675 .
    2. 张原,司源. 基于深度学习的电厂跑冒滴漏视频识别应用研究. 电子技术应用. 2025(02): 21-28 .
    3. 卜乐,雷阳. 光伏发电机组隐性故障快速序列化预警技术. 电子设计工程. 2025(05): 142-146 .
    4. 刘保松,姜伟. 基于YOLOv5的光伏组件EL照片缺陷检测报告系统研究. 光源与照明. 2024(01): 134-136 .
    5. 吴碧海,王超,魏嘉隆,裴星宇. 基于多模态感知的变电站智能巡视技术. 广东电力. 2024(03): 54-63 .
    6. 燕倩如,张磊,叶军建,李熙尉,王佳源. 无人机航拍影像的矿区泥石流物源目标检测——以大同市里道寺窑沟为例. 山西大同大学学报(自然科学版). 2024(03): 101-107 .
    7. 范钧玮,饶全瑞,赵薇,宋美,刘广臣. 改进的YOLOv5双影像光伏故障小目标检测. 太阳能学报. 2024(07): 510-516 .
    8. 刘晶,祁文哲,吕德芳,李杉杉. 改进YOLOv5的轨面伤损检测方法. 智能计算机与应用. 2024(06): 71-78 .
    9. 严如强,周峥,杨远贵,李亚松,胡晨烨,陶治宇,赵志斌,王诗彬,陈雪峰. 可解释人工智能在工业智能诊断中的挑战和机遇:归因解释. 机械工程学报. 2024(12): 21-40 .
    10. 徐俊山,马廷,宋磊,张晓东. 基于非线性信号的光伏组件表面清洁度识别技术. 计算机测量与控制. 2024(08): 311-316 .
    11. 郑志文,柳朝阳. 基于样本生成技术的光伏组件故障智能诊断方法研究. 电器工业. 2024(09): 52-56 .
    12. 徐彦威,李军,董元方,张小利. YOLO系列目标检测算法综述. 计算机科学与探索. 2024(09): 2221-2238 .
    13. 郝帅,王海莹,马旭,吴瑛琦,何田,李嘉豪. 基于高阶空间交互网络的光伏组件热斑故障检测. 太阳能学报. 2024(08): 358-366 .
    14. 何尧玺,曾戌运,李雪松,纪方旭,杨奕帆. 基于深度融合无人机AI巡检的光伏场站智慧运维管理系统研究. 自动化应用. 2024(19): 47-50 .
    15. 胡宪富,张海彬,李东赫,刘冰,张强. 基于注意力机制和多路径YOLOv7的光伏组件故障诊断研究. 测控技术. 2024(11): 17-22 .
    16. 孙海蓉,刘永朋,周黎辉. 基于轻量化YOLOv5s的光伏热斑检测定位方法. 太阳能学报. 2024(11): 282-288 .
    17. 李冰,赵宽,白云山,郭聪彬,徐蔚,徐大伟,翟永杰. 基于YOLOv7-EPAN的光伏板红外图像缺陷检测. 红外技术. 2024(11): 1315-1324 . 本站查看
    18. 王云冰,付晓刚,牛源. 基于无人机光伏巡检的路线优化与故障检测. 上海电机学院学报. 2023(05): 275-280 .
    19. 许逵,李鑫卓,张历,张俊杰,杨宁. 配电线网施工安全设备旋转目标检测算法. 电力大数据. 2023(08): 10-22 .
    20. 郝帅,吴瑛琦,马旭,李彤,王海莹. 融合知识蒸馏和注意力机制的光伏热斑检测. 光学精密工程. 2023(24): 3640-3650 .

    Other cited types(18)

Catalog

    Article views (250) PDF downloads (47) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return