Citation: | WANG Ou, LUO Xiaobo. Panchromatic and Multispectral Images Fusion Method Based on Detail Information Extraction[J]. Infrared Technology , 2022, 44(9): 920-928. |
[1] |
王芬, 郭擎, 葛小青. 深度递归残差网络的遥感图像空谱融合[J]. 遥感学报, 2021, 25(6): 1244-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106004.htm
WANG F, GUO Q, GE X Q. Pan-sharpening by deep recursive residual network[J]. National Remote Sensing Bulletin, 2021, 25(6): 1244-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106004.htm
|
[2] |
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101010.htm
LI S T, LI C Y, KANG X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101010.htm
|
[3] |
MENG X, SHEN H, LI H, et al. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: practical discussion and challenges[J]. Information Fusion, 2019, 46: 102-113. DOI: 10.1016/j.inffus.2018.05.006
|
[4] |
陈毛毛, 郭擎, 刘明亮, 等. 密集卷积残差网络的遥感图像融合[J]. 遥感学报, 2021, 25(6): 1270-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106006.htm
CHEN M M, GUO Q, LIU M L, et al. Pan-sharpening by residual network with dense convolution for remote sensing images[J]. National Remote Sensing Bulletin, 2021, 25(6): 1270-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106006.htm
|
[5] |
YANG Y, LU H, HUANG S, et al. Pansharpening based on joint-guided detail extraction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 389-401. DOI: 10.1109/JSTARS.2020.3032472
|
[6] |
YANG Y, WAN C, HUANG S, et al. Pansharpening based on low-rank fuzzy fusion and detail supplement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5466-5479. DOI: 10.1109/JSTARS.2020.3022857
|
[7] |
TU T M, HUANG P S, HUNG C L, et al. A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312. DOI: 10.1109/LGRS.2004.834804
|
[8] |
陈应霞, 陈艳, 刘丛. 遥感影像融合AIHS转换与粒子群优化算法[J]. 测绘学报, 2019, 48(10): 1296-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201910011.htm
CHEN Y X, CHEN Y, LIU C. Joint AIHS and particles swarm optimization for pan-sharpening[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1296-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201910011.htm
|
[9] |
Rahmani S, Strait M, Merkurjev D, et al. An adaptive IHS pan-sharpening method[J]. IEEE Geoscience & Remote Sensing Letters, 2010, 7(4): 746-750.
|
[10] |
王威, 张佳娥. 基于引导滤波和shearlet稀疏的遥感图像融合算法[J]. 计算机工程与科学, 2018, 40(7): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201808017.htm
WANG W, ZHANG J E. A remote sensing image fusion algorithm based on guided filtering and shearlet sparse base[J]. Computer Engineering and Science, 2018, 40(7): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201808017.htm
|
[11] |
JIAN L, YANG X, WEI W, et al. Pansharpening using a guided image filter based on dual-scale detail extraction[J/OL]. Journal of Ambient Intelligence and Humanized Computing, 2018: 1-15, https://doi.org/ 10.1007/s12652-018-0866-4.
|
[12] |
ZHANG Q, SHEN X, XU L, et al. Rolling guidance filter[C]//European Conference on Computer Vision, 2014: 815-830.
|
[13] |
陈峰, 李敏, 马乐, 等. 基于滚动引导滤波的红外与可见光图像融合算法[J]. 红外技术, 2020, 42(1): 54-61. http://hwjs.nvir.cn/article/id/hwjs202001008
CHEN F, LI M, MA L, et al. Infrared and visible image fusion algorithm based on the rolling guidance filter[J]. Infrared Technology, 2020, 42(1): 54-61. http://hwjs.nvir.cn/article/id/hwjs202001008
|
[14] |
LI Q, YANG X, WU W, et al. Pansharpening multispectral remote‐sensing images with guided filter for monitoring impact of human behavior on environment[J]. Concurrency and Computation: Practice and Experience, 2018, 33(4): e5074.
|
[15] |
Kalpoma K A, Kawano K, Kudoh J I. IKONOS image fusion process using steepest descent method with bi-linear interpolation[J]. International Journal for Remote Sensing, 2013, 34(1-2): 505-518.
|
[16] |
Wald L, Ranchin T, Mangolini M. Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(6): 691-699.
|
[1] | LI Wen, YE Kuntao, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Algorithm Based on Gaussian Fuzzy Logic and Adaptive Dual-Channel Spiking Cortical Model[J]. Infrared Technology , 2022, 44(7): 693-701. |
[2] | YANG Sunyun, XI Zhenghao, WANG Handong, LUO Xiao, KAN Xiu. Image Fusion Based on NSCT and Minimum-Local Mean Gradient[J]. Infrared Technology , 2021, 43(1): 13-20. |
[3] | QIAN Wei, CHANG Xia, HU Ling. Infrared and Visible Image Pseudo Color Fusion Algorithm Based on Improved Color Transfer Strategy and NSCT[J]. Infrared Technology , 2019, 41(6): 555-560. |
[4] | ZHAO Jingchao, LIN Suzhen, LI Dawei, WANG Lifang, YANG Xiaoli. A Comparative Study of Intuitionistic Fuzzy Sets in Multi-band Image Fusion[J]. Infrared Technology , 2018, 40(9): 881-886. |
[5] | YANG Guang, ZHANG Xiaohan, ZHANG Jianfeng, HUANG Junhua. A Fusion Method for Hyperspectral Imagery Based on Area Feature Detection Using NSCT[J]. Infrared Technology , 2017, 39(6): 505-511. |
[6] | YANG Fengbao, DONG Anran, ZHANG Lei, JI Linna. Infrared Polarization Image Fusion Using the Synergistic Combination of DWT, NSCT and Improved PCA[J]. Infrared Technology , 2017, 39(3): 201-208. |
[7] | YUAN Jin-lou, WU Jin, LIU Jin. Image Fusion Based on Compressed Sensing of NSCT and DWT[J]. Infrared Technology , 2015, 37(11): 957-961. |
[8] | AN Fu, YANG Feng-bao, NIU Tao. A Fusion Model of Infrared Polarization Images Based on Fuzzy Logic and Feature Difference Driving[J]. Infrared Technology , 2014, (4): 304-310. |
[10] | Study on Algorithm of Infrared Image Enhancement Based on Fuzzy Theory[J]. Infrared Technology , 2003, 25(2): 13-14. DOI: 10.3969/j.issn.1001-8891.2003.02.004 |
1. |
肖文健,王彦斌,蒋成龙,周旋风,张德锋. 复杂场景下红外探测系统性能分析与建模. 红外技术. 2025(01): 29-35+43 .
![]() |