WANG Ou, LUO Xiaobo. Panchromatic and Multispectral Images Fusion Method Based on Detail Information Extraction[J]. Infrared Technology , 2022, 44(9): 920-928.
Citation: WANG Ou, LUO Xiaobo. Panchromatic and Multispectral Images Fusion Method Based on Detail Information Extraction[J]. Infrared Technology , 2022, 44(9): 920-928.

Panchromatic and Multispectral Images Fusion Method Based on Detail Information Extraction

More Information
  • Received Date: January 03, 2022
  • Revised Date: February 08, 2022
  • The fusion of panchromatic images (Pan) and multi-spectral images (MS) is designed to generate multi-spectral images with high spatial resolution. A fusion method based on detailed information extraction is proposed to improve the quality of the fused images. First, the high-frequency components of Pan and MS are obtained by a rolling guidance filter and margin calculation, respectively. Second, the adaptive intensity-hue-saturation (AIHS) transform is used to process the high-frequency components of MS and Pan, determined by the pixel significance, to generate the corresponding intensity component (I, intensity). Then, the difference between Pan and I is calculated to obtain the detailed image. Then, the residual image is obtained by calculating the difference between the high-frequency components of Pan and MS with a guided filter. Finally, the detailed and residual images are integrated with the original MS image using the steepest descent method to obtain the final fusion result. The experimental results demonstrate that the fused images obtained by the proposed algorithm can achieve better subjective visual effect. Simultaneously, the objective evaluation indicators are better.
  • [1]
    王芬, 郭擎, 葛小青. 深度递归残差网络的遥感图像空谱融合[J]. 遥感学报, 2021, 25(6): 1244-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106004.htm

    WANG F, GUO Q, GE X Q. Pan-sharpening by deep recursive residual network[J]. National Remote Sensing Bulletin, 2021, 25(6): 1244-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106004.htm
    [2]
    李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101010.htm

    LI S T, LI C Y, KANG X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101010.htm
    [3]
    MENG X, SHEN H, LI H, et al. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: practical discussion and challenges[J]. Information Fusion, 2019, 46: 102-113. DOI: 10.1016/j.inffus.2018.05.006
    [4]
    陈毛毛, 郭擎, 刘明亮, 等. 密集卷积残差网络的遥感图像融合[J]. 遥感学报, 2021, 25(6): 1270-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106006.htm

    CHEN M M, GUO Q, LIU M L, et al. Pan-sharpening by residual network with dense convolution for remote sensing images[J]. National Remote Sensing Bulletin, 2021, 25(6): 1270-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202106006.htm
    [5]
    YANG Y, LU H, HUANG S, et al. Pansharpening based on joint-guided detail extraction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 389-401. DOI: 10.1109/JSTARS.2020.3032472
    [6]
    YANG Y, WAN C, HUANG S, et al. Pansharpening based on low-rank fuzzy fusion and detail supplement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5466-5479. DOI: 10.1109/JSTARS.2020.3022857
    [7]
    TU T M, HUANG P S, HUNG C L, et al. A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312. DOI: 10.1109/LGRS.2004.834804
    [8]
    陈应霞, 陈艳, 刘丛. 遥感影像融合AIHS转换与粒子群优化算法[J]. 测绘学报, 2019, 48(10): 1296-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201910011.htm

    CHEN Y X, CHEN Y, LIU C. Joint AIHS and particles swarm optimization for pan-sharpening[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1296-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201910011.htm
    [9]
    Rahmani S, Strait M, Merkurjev D, et al. An adaptive IHS pan-sharpening method[J]. IEEE Geoscience & Remote Sensing Letters, 2010, 7(4): 746-750.
    [10]
    王威, 张佳娥. 基于引导滤波和shearlet稀疏的遥感图像融合算法[J]. 计算机工程与科学, 2018, 40(7): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201808017.htm

    WANG W, ZHANG J E. A remote sensing image fusion algorithm based on guided filtering and shearlet sparse base[J]. Computer Engineering and Science, 2018, 40(7): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK201808017.htm
    [11]
    JIAN L, YANG X, WEI W, et al. Pansharpening using a guided image filter based on dual-scale detail extraction[J/OL]. Journal of Ambient Intelligence and Humanized Computing, 2018: 1-15, https://doi.org/ 10.1007/s12652-018-0866-4.
    [12]
    ZHANG Q, SHEN X, XU L, et al. Rolling guidance filter[C]//European Conference on Computer Vision, 2014: 815-830.
    [13]
    陈峰, 李敏, 马乐, 等. 基于滚动引导滤波的红外与可见光图像融合算法[J]. 红外技术, 2020, 42(1): 54-61. http://hwjs.nvir.cn/article/id/hwjs202001008

    CHEN F, LI M, MA L, et al. Infrared and visible image fusion algorithm based on the rolling guidance filter[J]. Infrared Technology, 2020, 42(1): 54-61. http://hwjs.nvir.cn/article/id/hwjs202001008
    [14]
    LI Q, YANG X, WU W, et al. Pansharpening multispectral remote‐sensing images with guided filter for monitoring impact of human behavior on environment[J]. Concurrency and Computation: Practice and Experience, 2018, 33(4): e5074.
    [15]
    Kalpoma K A, Kawano K, Kudoh J I. IKONOS image fusion process using steepest descent method with bi-linear interpolation[J]. International Journal for Remote Sensing, 2013, 34(1-2): 505-518.
    [16]
    Wald L, Ranchin T, Mangolini M. Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(6): 691-699.
  • Related Articles

    [1]LI Wen, YE Kuntao, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Algorithm Based on Gaussian Fuzzy Logic and Adaptive Dual-Channel Spiking Cortical Model[J]. Infrared Technology , 2022, 44(7): 693-701.
    [2]YANG Sunyun, XI Zhenghao, WANG Handong, LUO Xiao, KAN Xiu. Image Fusion Based on NSCT and Minimum-Local Mean Gradient[J]. Infrared Technology , 2021, 43(1): 13-20.
    [3]QIAN Wei, CHANG Xia, HU Ling. Infrared and Visible Image Pseudo Color Fusion Algorithm Based on Improved Color Transfer Strategy and NSCT[J]. Infrared Technology , 2019, 41(6): 555-560.
    [4]ZHAO Jingchao, LIN Suzhen, LI Dawei, WANG Lifang, YANG Xiaoli. A Comparative Study of Intuitionistic Fuzzy Sets in Multi-band Image Fusion[J]. Infrared Technology , 2018, 40(9): 881-886.
    [5]YANG Guang, ZHANG Xiaohan, ZHANG Jianfeng, HUANG Junhua. A Fusion Method for Hyperspectral Imagery Based on Area Feature Detection Using NSCT[J]. Infrared Technology , 2017, 39(6): 505-511.
    [6]YANG Fengbao, DONG Anran, ZHANG Lei, JI Linna. Infrared Polarization Image Fusion Using the Synergistic Combination of DWT, NSCT and Improved PCA[J]. Infrared Technology , 2017, 39(3): 201-208.
    [7]YUAN Jin-lou, WU Jin, LIU Jin. Image Fusion Based on Compressed Sensing of NSCT and DWT[J]. Infrared Technology , 2015, 37(11): 957-961.
    [8]AN Fu, YANG Feng-bao, NIU Tao. A Fusion Model of Infrared Polarization Images Based on Fuzzy Logic and Feature Difference Driving[J]. Infrared Technology , 2014, (4): 304-310.
    [10]Study on Algorithm of Infrared Image Enhancement Based on Fuzzy Theory[J]. Infrared Technology , 2003, 25(2): 13-14. DOI: 10.3969/j.issn.1001-8891.2003.02.004
  • Cited by

    Periodical cited type(1)

    1. 肖文健,王彦斌,蒋成龙,周旋风,张德锋. 复杂场景下红外探测系统性能分析与建模. 红外技术. 2025(01): 29-35+43 . 本站查看

    Other cited types(0)

Catalog

    Article views (206) PDF downloads (39) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return