KANG Ming, HAN Senping, YANG Hongjie, TANG Dedong, LI Yanjun, WANG Zhiqi. Data Preprocessing Method for Infrared Spectra Analysis of Natural Gas Components[J]. Infrared Technology , 2021, 43(8): 804-808.
Citation: KANG Ming, HAN Senping, YANG Hongjie, TANG Dedong, LI Yanjun, WANG Zhiqi. Data Preprocessing Method for Infrared Spectra Analysis of Natural Gas Components[J]. Infrared Technology , 2021, 43(8): 804-808.

Data Preprocessing Method for Infrared Spectra Analysis of Natural Gas Components

More Information
  • Received Date: January 04, 2021
  • Revised Date: January 18, 2021
  • When using infrared spectroscopy to analyze the components of natural gas, the obtained spectral signals often contain interference from stray light, noise, baseline drift, and other factors, which affects the resulting quantitative analysis. Therefore, it is necessary to preprocess the original spectrum before modeling. As a potential solution, an SG smoothing method combined with the soft threshold denoising method of the sym6 wavelet function was proposed to preprocess the spectrogram. The traditional preprocessing method and the proposed method are compared and analyzed. The results show that when the proposed method is used to preprocess the spectrogram, the highest goodness of fit value is 0.98652, and the lowest residual sum of squares value is 5.50694, which proves that the function peak fitting effect is the best after using this method, and the processing effect is better than that of the traditional method.
  • [1]
    JIAO Y, LI Z, CHEN X, et al. Preprocessing methods for near-infrared spectrum calibration[J]. Journal of Chemometrics, 2020, 34(11): e3306.
    [2]
    YANG J, DU L, GONG W, et al. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration[J]. Optics Express, 2019, 27(4): 3978. DOI: 10.1364/OE.27.003978
    [3]
    LI Y, HUANG Y, XIA J, et al. Quantitative analysis of honey adulteration by spectrum analysis combined with several high-level data fusion strategies[J]. Vibrational Spectroscopy, 2020, 108: 103060. DOI: 10.1016/j.vibspec.2020.103060
    [4]
    第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9): 2800-2806. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201909027.htm

    DIWU Pengyao, BIAN Xi Hui, WANG Zifang, et al. Selection of spectral pretreatment methods[J]. Spectroscopy and Spectral Analysis, 2019, 39 (9): 2800-2806 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201909027.htm
    [5]
    Bastiaansen W, Klein S, Steegers㏕heunissen R P, et al. VP24.02: towards a novel human embryonic brain atlas: fully automated preprocessing of prenatal ultrasound using artificial intelligence[J]. Ultrasound in Obstetrics and Gynecology, 2020, 56(S1): 159-159.
    [6]
    HUANG X, HUANG C, ZHAI G, et al. Data processing method of multibeam bathymetry based on sparse weighted LS-SVM machine algorithm[J]. IEEE Journal of Oceanic Engineering, 2019, 45(4): 1538-1551.
    [7]
    DING Y, ZHANG W, ZHAO X, et al. A hybrid random forest method fusing wavelet transform and variable importance for the quantitative analysis of K in potassic salt or using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(6): 1131-1138. DOI: 10.1039/D0JA00010H
    [8]
    ZHANG J, WEN H, TANG L. Improved smoothing frequency shifting and filtering algorithm for harmonic analysis with systematic error compensation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9500-9509. DOI: 10.1109/TIE.2019.2892664
    [9]
    杨帆, 王鹏, 张宁超, 等. 一种基于小波变换的改进滤波算法及其在光谱去噪方面的应用[J]. 国外电子测量技术, 2020, 39(8): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL202008021.htm

    YANG Fan, WANG Peng, ZHANG Ningchao, et al. An improved filtering algorithm based on wavelet transform and its application in spectral denoising[J]. Foreign Electronic Measurement Technology, 2020, 39 (8): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL202008021.htm
    [10]
    Mahajan G R, Das B, Gaikwad B, et al. Monitoring properties of the salt-affected soils by multivariate analysis of the visible and near- infrared hyperspectral data[J]. Catena, 2021, 198: 105041. DOI: 10.1016/j.catena.2020.105041
    [11]
    侯培国, 李宁, 常江, 等. SG平滑和IBPLS联合优化水中油分析方法的研究[J]. 光谱学与光谱分析, 2015, 35(6): 1529-1533. DOI: 10.3964/j.issn.1000-0593(2015)06-1529-05

    HOU Peiguo, LI Ning, CHANG Jiang, et al. Research on SG smoothing and IBPLS joint optimization of oil-in-water analysis method[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1529-1533. DOI: 10.3964/j.issn.1000-0593(2015)06-1529-05
    [12]
    Zikiou N, Lahdir M, Helbert D. Hyperspectral image classification using graph-based wavelet transform[J]. International Journal of Remote Sensing, 2020, 41(7): 2624-2643. DOI: 10.1080/01431161.2019.1694194
    [13]
    Bunaciu A A, Aboul-Enein H Y. Adulterated drug analysis using FTIR spectroscopy[J]. Applied Spectroscopy Reviews, 2021, 56(5): 423-437. DOI: 10.1080/05704928.2020.1811717
    [14]
    LIU F, ZHANG Y, Yildirim T, et al. Signal denoising optimization based on a Hilbert-Huang transform-triple adaptable wavelet packet transform algorithm[J]. EPL (Europhysics Letters), 2019, 124(5): 54002. DOI: 10.1209/0295-5075/124/54002
    [15]
    ZHANG M, LU C, LIU C. Improved double-threshold denoising method based on the wavelet transform[J]. OSA Continuum, 2019, 2(8): 2328-2342. DOI: 10.1364/OSAC.2.002328
  • Related Articles

    [1]BAI Xiaofeng, ZHANG Lei, YAN Shijun, QIAN Yunsheng, ZHANG Qin, SU Yue, CHENG Hongchang, CHENG Wei, LI Qi. Measurement of Signal to Noise Ratio of UV Image Intensifier Assembly[J]. Infrared Technology , 2024, 46(11): 1302-1307.
    [2]WANG Jialong, LIU Yanzhen, YANG Xiaokun, HUANG Fuyun, YANG Chaowei, LI Xiongjun. Surface Treatment Method of Near-Stoichiometric Ratio HgCdTe Film[J]. Infrared Technology , 2024, 46(6): 646-653.
    [3]CHANG Shanshan, MA Yunfeng, LIAO Lifen, ZHAO Peng, CHENG Wang, FAN Zhongwei. Measurement of Extinction Ratio of Brewster Angle Polarizer Based on Air Gap Prism[J]. Infrared Technology , 2019, 41(9): 882-886.
    [4]SANG Xueyi, JI Honghu, WANG Ding. Influence of Length-Diameter Ratio and Offset-Diameter Ratio on Performance of Serpentine 2-D Nozzle[J]. Infrared Technology , 2019, 41(5): 443-449.
    [5]Image Fusion Algorithm for Visual and Infrared Image Based on Local Energy Ratio[J]. Infrared Technology , 2008, 30(4): 221-224. DOI: 10.3969/j.issn.1001-8891.2008.04.010
    [6]CHEN Wei-zhen, ZHANG Chun-hua, ZHOU Xiao-dong. A Study on Luminosity Features and Signal Noise Ratio of Space Target[J]. Infrared Technology , 2007, 29(12): 716-719. DOI: 10.3969/j.issn.1001-8891.2007.12.009
    [7]LI Hui, QIAN Yun-sheng, CHANG Ben-kang, LIU Lei, XIA Yang, LI Shi-yi. The Research of K Factor for Signal-to-noise Ratio of LLLIntensifier[J]. Infrared Technology , 2007, 29(8): 488-490. DOI: 10.3969/j.issn.1001-8891.2007.08.015
    [8]PU Li, JIN Wei-qi, LIU Yu-shu, SU Bing-hua, ZHANG Nan. A Study of Wavelet Bi-cubic Ratio Interpolation Algorithm[J]. Infrared Technology , 2006, 28(8): 453-455. DOI: 10.3969/j.issn.1001-8891.2006.08.005
    [9]CHEN Xi, TONG Ming-ming, XING Ji-chuan. A Research on Testing of Optic-crystal Extinction-ratio[J]. Infrared Technology , 2006, 28(7): 388-390. DOI: 10.3969/j.issn.1001-8891.2006.07.004
    [10]Transmission of Two Wave Bands Infrared Radiation Ratio of Aerial Object in the Atmosphere[J]. Infrared Technology , 2003, 25(1): 40-43. DOI: 10.3969/j.issn.1001-8891.2003.01.009
  • Cited by

    Periodical cited type(5)

    1. 杨志勇,王晓伟,杨雨豪,张明娣,张志伟. 分时型长波红外偏振成像系统图像配准研究. 火箭军工程大学学报. 2024(05): 44-52 .
    2. 杨天敏,王晓燕. 偏振图像融合的人脸图像增强研究. 激光杂志. 2023(03): 148-152 .
    3. 宿德志,李慧,刘亮,张纪磊. 分时偏振成像系统旋转角度误差校正. 舰船电子工程. 2023(09): 36-41 .
    4. 马一哲,王世勇,雷腾,李范鸣. 基于连续旋转的准实时偏振探测系统成像模型与误差分析(特邀). 光电技术应用. 2022(05): 82-87+102 .
    5. 张杨,聂亮,陈超,王天澳,史少聪. 基于偏振成像均衡化的目标对比度提升研究. 应用激光. 2022(12): 137-146 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return