ZHANG Jian, HUANG Anxue. Infrared and Visible Image Fusion Based on Improved LatLRR Algorithm[J]. Infrared Technology , 2024, 46(6): 672-680.
Citation: ZHANG Jian, HUANG Anxue. Infrared and Visible Image Fusion Based on Improved LatLRR Algorithm[J]. Infrared Technology , 2024, 46(6): 672-680.

Infrared and Visible Image Fusion Based on Improved LatLRR Algorithm

More Information
  • Received Date: March 25, 2023
  • Revised Date: August 29, 2023
  • Available Online: June 23, 2024
  • An improved latent low-rank representation(ILatLRR) is proposed to make the target more prominent and the background information more abundant after infrared and visible image fusion. First, the underlying layer obtained using LatLRR was decomposed at multiple levels to obtain additional underlying detail layers. Second, multilevel decomposition control was adopted based on the energy of the horizontal and vertical components of the detail layer and global contrast of the base layer to avoid invalid decomposition. Finally, different fusion strategies were adopted for the base and detail layers. The experimental simulations show that the fusion result of ILatLRR displays a sense of hierarchy; the image is clear; and the texture is rich. The contour details of the infrared thermal radiation target are maintained, retaining a large number of visible light image background features, with an objective evaluation index better than those of other algorithms.

  • [1]
    李一白, 王彦林, 闫禹, 等. 基于显著性检测的不同视角下红外与可见光图像融合[J]. 激光与红外, 2021, 51(4): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202104011.htm

    LI Yibai, WANG Yanlin, YAN Yu, et al. Infrared and visible images fusion from different views based on saliency detection[J]. Laser & Infrared, 2021, 51(4): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202104011.htm
    [2]
    荣传振, 贾永兴, 吴城, 等. 红外与可见光图像分解与融合方法研究[J]. 数据采集与处理, 2019, 34(1): 146-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201901015.htm

    RONG Chuanzhen, JIA Yongxing, WU Cheng, et al. Research on infrared and visible image decomposition and fusion methods[J]. Data Acquisition, 2019, 34(1): 146-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201901015.htm
    [3]
    ZHAN L, ZHUANG Y, HUANG L. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computational Acoustics, 2017, 28(2): 57-71.
    [4]
    张贵仓, 苏金凤, 拓明秀. DTCWT域的红外与可见光图像融合算法[J]. 计算机工程与科学, 2020, 42(7): 1226-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK202007011.htm

    ZHANG Guicang, SU Jinfeng, TUO Mingxiu. Fusion algorithm of infrared and visible images in DTCWT domain[J]. Computer Engineering and Science, 2020, 42(7): 1226-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK202007011.htm
    [5]
    HE Guiqing, XING Siyuan, HE Xingjian, et al. Image fusion method based on simultaneous sparse representation with non-subsampled contourlet transform[J]. IET Computer Vision, 2019, 13(2): 240-248. DOI: 10.1049/iet-cvi.2018.5496
    [6]
    ZHANG Baohua, LU Xiaoqi, PEI Haiquan, et al. A fusion algorithm for infrared and visible images based on saliency analysis and non- subsampled Shearlet transform[J]. Infrared Physics & Technology, 2015, 73: 286-297.
    [7]
    刘成士, 赵志刚, 李强, 等. 加强的低秩表示图像去噪算法[J]. 计算机工程与应用, 2020, 56(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202002032.htm

    LIU Chengshi, ZHAO Zhigang, LI Qiang, et al. Enhanced Low-rank representation image denoising algorithm[J]. Computer Engineering and Applications, 2020, 56(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202002032.htm
    [8]
    陈潮起, 孟祥超, 邵枫, 等. 一种基于多尺度低秩分解的红外与可见光图像融合方法[J]. 光学学报, 2020, 40(11): 1110001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202011008.htm

    CHEN Chaoqi, MENG Xiangchao, SHAO Feng, et al. Infrared and visible image fusion method based on multiscale low-rank decomposition[J]. Acta Optica Sinica, 2020, 40(11): 1110001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202011008.htm
    [9]
    TAO Tiwei, LIU Mingxia, HOU Yingkun, et al. Latent low-rank representation with sparse consistency constraint for infrared and visible image fusion[J]. Optik, 2022, 261: 169102.
    [10]
    LI H, WU X J, KITTLER J. MDLatLRR: a novel decomposition method for infrared and visible image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4733-4746.
    [11]
    蔡怀宇, 卓励然, 朱攀, 等. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合[J]. 光子学报, 2018, 47(6): 061002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201806027.htm

    CAI Huaiyu, ZHUO Liran, ZHU Pan, et al. Fusion of infrared and visible images based on non-subsampled contourlet transform and intuitionistic fuzzy set[J]. Acta Photonica Sinica, 2018, 47(6): 061002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201806027.htm
    [12]
    张林发, 张榆锋, 王琨, 等. 基于直觉模糊集和亮度增强的医学图像融合[J]. 计算机应用, 2021, 41(7): 2082-2091. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202107036.htm

    ZHANG Linfa, ZHANG Yufeng, WANG Kun, et al. Medical image fusion with intuitionistic fuzzy set and intensity enhancement[J]. Journal of Computer Applications, 2021, 41(7): 2082-2091. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202107036.htm
    [13]
    朱亚辉, 高逦. 基于复合分解与直觉模糊集的红外与可见光图像融合方法[J]. 西北工业大学学报, 2021, 39(4): 930-936. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202104028.htm

    ZHU Yahui, GAO Li. Infrared and visible image fusion method based on compound decomposition and intuitionistic fuzzy set[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 930-936. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202104028.htm
    [14]
    闵莉, 曹思健, 赵怀慈, 等. 改进生成对抗网络实现红外与可见光图像融合[J]. 红外与激光工程, 2022, 51(4): 20210291. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204041.htm

    MIN Li, CAO Sijian, ZHAO Huaici, et al. Infrared and visible image fusion using improved generative adversarial networks[J]. Infrared and Laser Engineering, 2022, 51(4): 20210291. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204041.htm
  • Related Articles

    [1]XING Yanchao, NIU Zhenhua. Infrared and Visible Image Fusion Based on Global Energy Features and Improved PCNN[J]. Infrared Technology , 2024, 46(8): 902-911.
    [2]NIU Zhenhua, XING Yanchao, LIN Yingchao, WANG Chenxuan. Infrared and Visible Image Fusion Based on NSCT Combined with Saliency Map and Region Energy[J]. Infrared Technology , 2024, 46(1): 84-93.
    [3]LI Bicao, LU Jiaxi, LIU Zhoufeng, LI Chunlei, ZHANG Jie. Infrared and Visible Light Image Fusion Method Based on Swin Transformer and Hybrid Feature Aggregation[J]. Infrared Technology , 2023, 45(7): 721-731.
    [4]QU Haicheng, HU Qianqian, ZHANG Xuecong. Infrared and Visible Image Fusion Combining Information Perception and Multiscale Features[J]. Infrared Technology , 2023, 45(7): 685-695.
    [5]WANG Xinsai, FENG Xiao’er, LI Mingming. Research on Spatial Domain Image Fusion Algorithm Based on Energy Segmentation[J]. Infrared Technology , 2022, 44(7): 726-731.
    [6]WANG Junyao, WANG Zhishe, WU Yuanyuan, CHEN Yanlin, SHAO Wenyu. Multi-Feature Adaptive Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2022, 44(6): 571-579.
    [7]ZHAO Lichang, ZHANG Baohui, WU Jie, WU Xudong, JI Li. Fusion of Infrared and Visible Images Based on Gray Energy Difference[J]. Infrared Technology , 2020, 42(8): 775-782.
    [8]SUN Xin-de, LIU Guo-mei, BO Shu-kui. Fusion Algorithm for Infrared and Visible Light Images Based on QPSO and Neighbor Statistic Features[J]. Infrared Technology , 2014, (11): 900-904.
    [9]ZHANG Su-wen, CHEN Juan. A Image Fusion Method Based on Non-negative Matrix Factorization and Infrared Feature[J]. Infrared Technology , 2008, 30(8): 446-449. DOI: 10.3969/j.issn.1001-8891.2008.08.004
    [10]Image Fusion Algorithm for Visual and Infrared Image Based on Local Energy Ratio[J]. Infrared Technology , 2008, 30(4): 221-224. DOI: 10.3969/j.issn.1001-8891.2008.04.010
  • Cited by

    Periodical cited type(2)

    1. 赵雅婷,韩龙,何辉煌,陈楚. DSEL-CNN:结合注意力机制与均衡损失的图像融合算法. 红外技术. 2025(03): 358-366 . 本站查看
    2. 袁建华,陈广生,张天宇,黄淘,陈轩. 基于红外与可见光图像融合的GIS设备气体泄漏识别研究. 国外电子测量技术. 2024(12): 231-239 .

    Other cited types(0)

Catalog

    Article views (112) PDF downloads (53) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return