ZENG Jinneng, LI Zhen, CHU Zhujun, ZHANG Jianping, LI Jiaojiao, QIAO Fangjian, LI Jinsha, ZHAO Heng, GONG Yianni, LI Tingtao, XU Youyi, CHEN Kunyang, CHEN Weijun, WANG Yijin, WANG Yun, LI Yaobin, LIU Beihong, WANG Guangfan, LI Xiaofeng. Effect of Microchannel Plate Tilt Angle on Image Intensifier Performance[J]. Infrared Technology , 2023, 45(3): 322-327.
Citation: ZENG Jinneng, LI Zhen, CHU Zhujun, ZHANG Jianping, LI Jiaojiao, QIAO Fangjian, LI Jinsha, ZHAO Heng, GONG Yianni, LI Tingtao, XU Youyi, CHEN Kunyang, CHEN Weijun, WANG Yijin, WANG Yun, LI Yaobin, LIU Beihong, WANG Guangfan, LI Xiaofeng. Effect of Microchannel Plate Tilt Angle on Image Intensifier Performance[J]. Infrared Technology , 2023, 45(3): 322-327.

Effect of Microchannel Plate Tilt Angle on Image Intensifier Performance

More Information
  • Received Date: October 02, 2021
  • Revised Date: November 10, 2021
  • The effects of the microchannel plate (MCP) tilt angle on the MCP noise factor, resolution, and gain of an image intensifier was studied through an experimental comparison and analysis. The results showed that the relationship between the MCP noise factor and MCP tilt angle was parabolic when the MCP tilt angle was in the range of 5°–12°. The MCP noise factor was the smallest when the MCP tilt angle was 9°, and the resolution was negatively correlated with the MCP tilt angle. The resolution was the largest when the tilt angle of the MCP was 5°. The MCP gain changed parabolically with an increase in the MCP tilt angle. The MCP gain was the largest when the MCP tilt angle was 9°. Because the direction of the photoelectrons emitted by the photocathode of the image intensifier is certain, changing the MCP tilt angle causes the photoelectrons to enter the front end of the MCP channel at a different angle. This results in different secondary electron emission layer depths, such that the number of secondary electrons and the radius of the scattering spot formed by the electrons at the output end are different. To determine the best MCP tilt angle, the main performance requirements of an image intensifier under various usage scenarios must be comprehensively considered.
  • [1]
    潘金生. 微通道板及其主要性能特征[J]. 应用光学, 2004, 25(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200405008.htm

    PAN Jinsheng. Microchannel paltes and its main characteristics[J]. Journal of Applied Optics, 2004, 25(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200405008.htm
    [2]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防出版社, 2006.

    XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Devices[M]. Beijin: National Defense press Industry Press, 2006.
    [3]
    常本康. 多碱阴极光学监控原理研究[J]. 真空科学与技术, 1994, 14(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX199401008.htm

    CHANG Benkang. A study of survey and control principles on optical information of multi-alkali photocathode[J]. Vacuum Science and Technology, 1994, 14(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX199401008.htm
    [4]
    张淑琴. 电子倍增器微通道板(MCP)在微光夜视技术中的应用[J]. 山西电子技术, 2003(4): 28-29, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDS200304010.htm

    ZHANG Shuqin. The application of electronic multiplier (MCP) in low light level night vision technique[J]. Shanxi Electronic Technology, 2003(4): 28-29, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDS200304010.htm
    [5]
    Choi Y S, Kim J M. Monte carlo simulations for tilted-channel electronmultipliers[J]. IEEE Transactions on Electron Devices, 2000, 47(6): 1293-1296. DOI: 10.1109/16.842976
    [6]
    李晓峰, 张正君, 丛晓庆, 等. 微通道板结构参数对噪声因子的影响[J]. 光子学报, 2021, 50(4): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm

    LI Xiaofeng, ZHANG Zhenjun, CONG Xiaoqing, et al. Influence of microchannel plate structure parameters on noise factor[J]. Acta Photonica Sinica, 2021, 50(4): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
    [7]
    朱宇峰, 石峰. 防离子反馈MCP噪声因子测试与分析[J]. 红外与激光工程, 2013, 42(2): 499-502. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201302053.htm

    ZHU Yufeng, SHI Feng. Analysis and test on noise factor of Micro-channel plate with ion barrier film[J]. Infrared and Laser Engineering, 2013, 42(2): 499-502. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201302053.htm
    [8]
    石峰, 程宏昌, 贺英萍, 等. MCP输入电子能量与微光像增强器信噪比的关系[J]. 应用光学, 2008(4): 562-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200804017.htm

    SHI Feng, CHENG Hongchang, HE Yingping, et al. Optimization for signal-to-noise ratio of low-light-level image intensifier[J]. Journal of Applied Optics, 2008(4): 562-564. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200804017.htm
    [9]
    李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm

    LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on Resolution Improvement of Microchannel Plate[J]. Acta photonica Sinica, 2019, 48(12): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
    [10]
    Chrzanowski K. Review of night vision technology[J]. Opto-Electronics Review, 2013, 21(2): 153-181.
    [11]
    谢运涛, 张玉钧, 王玺, 等. 基于微通道板的像增强器增益饱和效应研究[J]. 红外与激光工程, 2018, 47(11): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811028.htm

    XIE Yuntao, ZHANG Yujun, WANG Xi, et al. Research on the gain saturation effect of an image intensifier based on microchannel plate[J]. Infrared and Laser Engineering, 2018, 47(11): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811028.htm
    [12]
    郝子恒, 李相鑫, 张妮, 等. 微通道板高增益二次电子发射层制备研究[J]. 红外技术, 2018, 40(11): 1077-1080. http://hwjs.nvir.cn/article/id/hwjs201811010

    HAO Ziheng, LI Xiangxin, ZHANG Ni, et al. Preparation of high gain secondary electron emission layer for micro-channel plate[J]. Infrared Technology, 2018, 40(11): 1077-1080. http://hwjs.nvir.cn/article/id/hwjs201811010
    [13]
    王洪刚, 钱芸生, 王勇, 等. 微通道板电子输运特性的仿真研究[J]. 计算物理, 2013, 30(2): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201302010.htm

    WANG Honggang, QIAN Yunsheng, WANG Yong, et al. Simulation of electronic transport in micro-channel plate[J]. Chinese Journal of Computatonal Physics, 2013, 30(2): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201302010.htm
    [14]
    杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型[J]. 物理学报, 2013, 62(8): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201308074.htm

    YANG Wenjin, LI Yongdong, LIU Chunliang. Model of secondary electron emission at high incident electron energy for metal[J]. Journal of Physics, 2013, 62(8): 516-520. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201308074.htm
    [15]
    翁明, 胡天存, 曹猛, 等. 电子入射角度对聚酰亚胺二次电子发射系数的影响[J]. 物理学报, 2015, 64(15): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201515057.htm

    WENG Ming, HU Tiancun, CAO Meng, et al. Effects of electron incident angle on the secondary electron yield for polyimide[J]. Journal of Physics, 2015, 64(15): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201515057.htm
    [16]
    谢爱根, 宋标, 赵浩峰. 高能有效真二次电子发射系数与逸出深度和入射角的关系[J]. 安徽大学学报: 自然科学版, 2008(6): 53-55, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDX200806016.htm

    XIE Aigen, SONG Biao, ZHAO Haofeng. The relations among real efficient secondary electron emission coefficient at high energy, the incident angle of primary electron and depth[J]. Journal of Anhui University : Natural Science Edition, 2008(6): 53-55, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDX200806016.htm
    [17]
    谢爱根, 裴元吉, 王荣, 等. 金属的有效真二次电子发射系数与高能原电子入射角的关系[J]. 高能物理与核物理, 2005(5): 530-532. https://www.cnki.com.cn/Article/CJFDTOTAL-KNWL20050500J.htm

    XIE Aigen, PEI Yuanji, WANG Rong, et al. Relation between the incident angle of high energy primary electron of metal and the real efficient emission coefficient of secondary electron[J]. High Energy Physics and Nuclear Physics, 2005(5): 530-532. https://www.cnki.com.cn/Article/CJFDTOTAL-KNWL20050500J.htm
    [18]
    李杨威, 任成燕, 孔飞, 等. 绝缘材料二次电子发射系数的测量及其影响因素研究进展[J]. 高压电器, 2019, 55(5): 1-9.

    LI Yangwei, REN Chengyan, KONG Fei, et al. Research progress on the measurement of secondary electron emission yield of insulation materials and influencing factors[J]. High Voltage Apparatus, 2019, 55(5): 1-9.
    [19]
    傅文红. MCP扩口工艺的理论、实验与测试技术研究[D]. 南京: 南京理工大学, 2006.

    FU Wenhong. The Research of Theory, Experiment and Testing Technology on Enlarging MCP's Port[D]. Nanjing: Nanjing University of Technology, 2006.
    [20]
    曾进能, 李廷涛, 常乐, 等. MCP输入增强膜对像增强器主要性能的影响研究[J]. 红外技术, 2020, 42(8): 735-741. http://hwjs.nvir.cn/article/id/hwjs202008005

    ZENG Jinneng, LI Tingtao, CHANG Le, et al. Study on the effect of MCP input enhancement film on the performance of image intensifier[J]. Infrared Technology, 2020, 42(8): 735-741. http://hwjs.nvir.cn/article/id/hwjs202008005
    [21]
    李晓峰, 李金沙, 常乐, 等. 微通道板噪声因子与工作电压关系研究[J]. 光子学报, 2020, 49(7): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm

    LI Xiaofeng, LI Jinsha, CHANG Le, et al. Study on the relationship between noise factor and working voltage of microchannel plate[J]. Acta Photonica Sinica, 2020, 49(7): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
    [22]
    程耀进, 石峰, 郭晖, 等. MCP参数对微光像增强器分辨力影响研究[J]. 应用光学, 2010, 31(2): 292-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201002028.htm

    CHENG Yaojin, SHI Feng, GUO Hui, et al. Effect of MCP parameters on resolution of image intensifier[J]. Journal of Applied Optics, 2010, 31(2): 292-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201002028.htm
    [23]
    张小东, 欧阳晓平, 何军章, 等. 微通道板的增益研究[J]. 核技术, 2019, 42(10): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201910008.htm

    ZHANG Xiaodong, OU-YANG Xiao-ping, HE Junzhang, et al. The study on the gain of microchannel plate[J]. Nuclear Techniques, 2019, 42(10): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201910008.htm
  • Related Articles

    [1]YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458.
    [2]LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379.
    [3]ZHANG Yi, FAN Yugang. Defect Detection of Eddy Current Thermal Imaging of Workpiece Based on Deep Learning and Domain Adaptation[J]. Infrared Technology , 2024, 46(3): 347-353.
    [4]DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128.
    [5]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [6]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [7]KUANG Chuwen, HE Wang. Object Detection Algorithm Based on Infrared and Visible Light Images[J]. Infrared Technology , 2022, 44(9): 912-919.
    [8]WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
    [9]WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271.
    [10]SHEN Xu, CHENG Xiaohui, WANG Xinzheng. Infrared Dim-small Object Detection Algorithm Based on Adaptive Scale Local Contrast Enhancement Combined with Visual Attention Mechanism[J]. Infrared Technology , 2019, 41(8): 764-771.

Catalog

    Article views (192) PDF downloads (68) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return