YANG Liangliang, LIU Chenglin, ZHAO Yongbing, SHEN Fahua, ZHAO Qi, LIU Jianli. Optimal Design of Wide Angle Diffractive Optical Element[J]. Infrared Technology , 2024, 46(3): 256-260.
Citation: YANG Liangliang, LIU Chenglin, ZHAO Yongbing, SHEN Fahua, ZHAO Qi, LIU Jianli. Optimal Design of Wide Angle Diffractive Optical Element[J]. Infrared Technology , 2024, 46(3): 256-260.

Optimal Design of Wide Angle Diffractive Optical Element

More Information
  • Received Date: February 14, 2023
  • Revised Date: March 30, 2023
  • The influence of the incident angle on the diffraction efficiency and microstructure height of the diffractive optical element (DOE) was analyzed to further study the influence of the incident angle and period width on the polychromatic integral diffraction efficiency (PIDE). Based on the extended scalar diffraction theory (ESDT), a mathematical model of the relationship among the microstructure height, incident angle, and period width of the DOE was established. An optimal design method for structural parameters, such as the design wavelength and microstructure height, was proposed based on maximizing the comprehensive PIDE (CPIDE) within a certain range of incident angles. A DOE operating within the infrared waveband was considered as an example. The results indicate that when the relative period width is 20 and the incidence angle range is 0° to 40°, the CPIDE of the DOE is 94.15%, and the microstructure height is 1.3396 μm. This design method can realize the optimal design of a wide-angle DOE.
  • Greisukh G I, Ezhov E G, Zakharov O A, Diffractive microstructures of zoom lenses for visible and near-infrared ranges based on novel optical plastics[J]. Journal of Optical Technology, 2022, 89(3): 127-131. DOI: 10.1364/JOT.89.000127
    田晓航, 薛常喜. 小F数红外双波段无热化折衍摄远物镜设计[J]. 光学学报, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm

    TIAN Xiaohang, XUE Changxi. Athermalization design of small f-number refractive-diffractive telephoto objective lens in infrared dual-band[J]. Acta Optica Sinica, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm
    段慧慧, 杨艳芳, 何英, 等. 4π聚焦系统中衍射光学元件对聚焦场多光球结构的影响[J]. 光学学报, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm

    DUAN Huihui, YANG Yanfang, HE Ying, et al. Influence of diffractive optical elements on multiple spherical spots in a 4π focusing system[J]. Acta Optica Sinica, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm
    张博, 崔庆丰, 朴明旭, 等. 双波段多层衍射光学元件的基底材料选择方法研究及其在变焦系统中的应用[J]. 光学学报, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm

    ZHANG Bo, CUI Qingfeng, PIAO Mingxu, et al. Substrate material selection method for dual-band multilayer diffractive optical elements and its application in the zoom system[J]. Acta Optica Sinica, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm
    Shima G G, David Fischer, Stefan Sinzinger. Multifocal multi-value phase zone plate for 3D focusing[J]. Applied Optics, 2019, 58(32): 8943-8949. DOI: 10.1364/AO.58.008943
    XUE Changxi, CUI Qingfeng. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]. Optics Letters, 2010, 35(7): 986-988. DOI: 10.1364/OL.35.000986
    YANG Liangliang, LIU Chenglin, LI Shengqiang. Optimal design of depth-scaling error for multilayer diffractive optical elements with oblique incidence[J]. Applied Optics, 2017, 56(15): 4532-4536. DOI: 10.1364/AO.56.004532
    GAO Long, To Suet, YANG Hongfang, et al. Effect of assembling errors on the diffraction efficiency for multilayer diffractive optical elements[J]. Applied Optics, 2014, 53: 7341-7347. DOI: 10.1364/AO.53.007341
    Laborde V, Loicq J, Habraken S. Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics[J]. Applied Optics, 2021, 60(7): 2037-2045. DOI: 10.1364/AO.414082
    YANG Hongfang, XUE Changxi. Sensitivity of diffraction efficiency to period width errors for multilayer diffractive optical elements[J]. Applied Optics, 2018, 57(14): 855-860.
    PANG H, YIN S Y, DENG Q L, et al. A novel method for the design of diffractive optical elements based on the Rayleigh–Sommerfeld integral[J]. Optics and Lasers in Engineering, 2015, 70: 38-44. DOI: 10.1016/j.optlaseng.2015.02.007
    Noponen E, Turunen J. Binary high-frequency-carrier diffractive optical elements: electromagnetic theory[J]. Journal of the Optical Society of America A, 1994, 11(3): 1097-1109. DOI: 10.1364/JOSAA.11.001097
    Swanson G J. Binary Optics Technology: Theoretical Limits on the Diffraction Efficiency of Multilevel Diffractive Optical Elements[R/OL]. M. I. T. Technical Report, 1991, https://api.semanticscholar.org/CorpusID:26445902.
    Greisukh G I, Danilov V A, Ezhov E G, et al. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth[J]. Optics Communications, 2015, 338: 54-57. DOI: 10.1016/j.optcom.2014.10.037
    HUO Furong, WANG Wensheng, XUE Changxi. Limits of scalar diffraction theory for multilayer diffractive optical elements[J]. Optik, 2016, 127: 5688-5694. DOI: 10.1016/j.ijleo.2016.03.062

Catalog

    Article views (121) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return