YANG Liangliang, LIU Chenglin, ZHAO Yongbing, SHEN Fahua, ZHAO Qi, LIU Jianli. Optimal Design of Wide Angle Diffractive Optical Element[J]. Infrared Technology , 2024, 46(3): 256-260.
Citation: YANG Liangliang, LIU Chenglin, ZHAO Yongbing, SHEN Fahua, ZHAO Qi, LIU Jianli. Optimal Design of Wide Angle Diffractive Optical Element[J]. Infrared Technology , 2024, 46(3): 256-260.

Optimal Design of Wide Angle Diffractive Optical Element

More Information
  • Received Date: February 14, 2023
  • Revised Date: March 30, 2023
  • The influence of the incident angle on the diffraction efficiency and microstructure height of the diffractive optical element (DOE) was analyzed to further study the influence of the incident angle and period width on the polychromatic integral diffraction efficiency (PIDE). Based on the extended scalar diffraction theory (ESDT), a mathematical model of the relationship among the microstructure height, incident angle, and period width of the DOE was established. An optimal design method for structural parameters, such as the design wavelength and microstructure height, was proposed based on maximizing the comprehensive PIDE (CPIDE) within a certain range of incident angles. A DOE operating within the infrared waveband was considered as an example. The results indicate that when the relative period width is 20 and the incidence angle range is 0° to 40°, the CPIDE of the DOE is 94.15%, and the microstructure height is 1.3396 μm. This design method can realize the optimal design of a wide-angle DOE.
  • [1]
    Greisukh G I, Ezhov E G, Zakharov O A, Diffractive microstructures of zoom lenses for visible and near-infrared ranges based on novel optical plastics[J]. Journal of Optical Technology, 2022, 89(3): 127-131. DOI: 10.1364/JOT.89.000127
    [2]
    田晓航, 薛常喜. 小F数红外双波段无热化折衍摄远物镜设计[J]. 光学学报, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm

    TIAN Xiaohang, XUE Changxi. Athermalization design of small f-number refractive-diffractive telephoto objective lens in infrared dual-band[J]. Acta Optica Sinica, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm
    [3]
    段慧慧, 杨艳芳, 何英, 等. 4π聚焦系统中衍射光学元件对聚焦场多光球结构的影响[J]. 光学学报, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm

    DUAN Huihui, YANG Yanfang, HE Ying, et al. Influence of diffractive optical elements on multiple spherical spots in a 4π focusing system[J]. Acta Optica Sinica, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm
    [4]
    张博, 崔庆丰, 朴明旭, 等. 双波段多层衍射光学元件的基底材料选择方法研究及其在变焦系统中的应用[J]. 光学学报, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm

    ZHANG Bo, CUI Qingfeng, PIAO Mingxu, et al. Substrate material selection method for dual-band multilayer diffractive optical elements and its application in the zoom system[J]. Acta Optica Sinica, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm
    [5]
    Shima G G, David Fischer, Stefan Sinzinger. Multifocal multi-value phase zone plate for 3D focusing[J]. Applied Optics, 2019, 58(32): 8943-8949. DOI: 10.1364/AO.58.008943
    [6]
    XUE Changxi, CUI Qingfeng. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]. Optics Letters, 2010, 35(7): 986-988. DOI: 10.1364/OL.35.000986
    [7]
    YANG Liangliang, LIU Chenglin, LI Shengqiang. Optimal design of depth-scaling error for multilayer diffractive optical elements with oblique incidence[J]. Applied Optics, 2017, 56(15): 4532-4536. DOI: 10.1364/AO.56.004532
    [8]
    GAO Long, To Suet, YANG Hongfang, et al. Effect of assembling errors on the diffraction efficiency for multilayer diffractive optical elements[J]. Applied Optics, 2014, 53: 7341-7347. DOI: 10.1364/AO.53.007341
    [9]
    Laborde V, Loicq J, Habraken S. Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics[J]. Applied Optics, 2021, 60(7): 2037-2045. DOI: 10.1364/AO.414082
    [10]
    YANG Hongfang, XUE Changxi. Sensitivity of diffraction efficiency to period width errors for multilayer diffractive optical elements[J]. Applied Optics, 2018, 57(14): 855-860.
    [11]
    PANG H, YIN S Y, DENG Q L, et al. A novel method for the design of diffractive optical elements based on the Rayleigh–Sommerfeld integral[J]. Optics and Lasers in Engineering, 2015, 70: 38-44. DOI: 10.1016/j.optlaseng.2015.02.007
    [12]
    Noponen E, Turunen J. Binary high-frequency-carrier diffractive optical elements: electromagnetic theory[J]. Journal of the Optical Society of America A, 1994, 11(3): 1097-1109. DOI: 10.1364/JOSAA.11.001097
    [13]
    Swanson G J. Binary Optics Technology: Theoretical Limits on the Diffraction Efficiency of Multilevel Diffractive Optical Elements[R/OL]. M. I. T. Technical Report, 1991, https://api.semanticscholar.org/CorpusID:26445902.
    [14]
    Greisukh G I, Danilov V A, Ezhov E G, et al. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth[J]. Optics Communications, 2015, 338: 54-57. DOI: 10.1016/j.optcom.2014.10.037
    [15]
    HUO Furong, WANG Wensheng, XUE Changxi. Limits of scalar diffraction theory for multilayer diffractive optical elements[J]. Optik, 2016, 127: 5688-5694. DOI: 10.1016/j.ijleo.2016.03.062
  • Related Articles

    [1]TANG Jiajian, SHEN Longhai, ZHONG Weiping, LI Xiang, LUO Hao. Design and Fabrication of 940 nm Filter and Research on Its Low Angle Effect[J]. Infrared Technology , 2022, 44(10): 1041-1044.
    [2]YANG Liangliang, XIA Yincong, LU Yucan. Effect of Antireflection Films on Diffraction Efficiency of Diffractive Optical Element[J]. Infrared Technology , 2021, 43(10): 930-933.
    [3]YANG Liangliang, ZHAO Yongbing, TANG Jian, GUO Renjia. Research on the Influence of Temperature and Microstructure Height Error on Diffraction Efficiency for Diffractive Optical Elements[J]. Infrared Technology , 2020, 42(3): 213-217.
    [4]YANG Liangliang, SHEN Fahua, LIU Chenglin, TONG Qiaoying. Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements[J]. Infrared Technology , 2019, 41(8): 699-704.
    [5]WANG Qiaofang, LUO Longying, LI Rujie, WANG Ke, WANG Guiquan, PENG Daidong, ZHANG Mei. A Novel Method for Angle Error Measurement of 6-face Rotating Drum[J]. Infrared Technology , 2016, 38(9): 739-741,757.
    [6]GAO Yong-fang, SHI Jia-ming, ZHAO Da-peng. Research on Modulation of Incidence Angle to Photonic Band Gap of One-dimensional Photonic Crystal[J]. Infrared Technology , 2011, 33(4): 195-197,206. DOI: 10.3969/j.issn.1001-8891.2011.04.003
    [7]LIU Rui-qi, CHEN Xing-ming, ZHAO Jia-qi. Applied Research of Diffractive Optical Elements in IR Imaging Systems[J]. Infrared Technology , 2009, 31(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2009.06.005
    [8]LAN Wei-hua, WANG Xin, LIU Yin-nian, DING Xue-zhuan, WANG Yue-ming, WANG Jian-yu. The Convex Grating Diffractive Efficiency Calculating and Second Diffraction Suppression[J]. Infrared Technology , 2009, 31(5): 256-258. DOI: 10.3969/j.issn.1001-8891.2009.05.003
    [9]CHEN Qiu-xia, CHEN Gui-lin. Design of Measuring the Stepped-Angle of Scanning Mirror with Linear CCD[J]. Infrared Technology , 2006, 28(3): 150-153. DOI: 10.3969/j.issn.1001-8891.2006.03.007
    [10]CHEN Qiu-xia, CHEN Gui-lin. Design of Measuring the Stepped-Angle of Scanning Mirror with Linear CCD[J]. Infrared Technology , 2005, 27(6): 453-457. DOI: 10.3969/j.issn.1001-8891.2005.06.005

Catalog

    Article views (104) PDF downloads (43) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return