Citation: | GUO Laigong, LIU Ankun, HUANG Chenrui, MU Chaomin. High-speed IR Temperature Measurement System[J]. Infrared Technology , 2025, 47(1): 36-43. |
To address issues such as slow response time, complex calibration, and limited suitability for special environments in high-speed temperature measurements, a refrigeration-based high-speed IR temperature measurement system is designed with an STM32F429IGT6 microcontroller as the core controller and an optical system combined with a refrigeration-type IR detector as the main components. The optical system employs a metal parabolic reflector to construct the optical components. In conjunction with a refrigeration-type IR detector, photoelectric conversion is accomplished with high-speed data acquisition performed by the microcontroller. The system has a sampling rate of 1 MHz, utilizes an SD card for data storage, and displays the temperature-change waveforms on the screen. Temperature calibration is conducted using the blackbody furnace method, and a least squares fitting is applied to establish the voltage-temperature relationship formula, resulting in a measurement error of ±1℃. The effective temperature measurement range is 10-200℃. Following calibration, the system underwent Hopkinson pressure bar impact testing for practical application. The test results indicated that the refrigeration-based high-speed IR temperature measurement system possesses a microsecond-level detection capability for temperature changes, with a fast response time, simple operation, and calibration, thus demonstrating its promising applications in the field of dynamic high-speed temperature measurements.
[1] |
ZHANG X, MENG Q, LUY Y, et al. Assessment of InSb infrared detector arrays assembly procedure employing ANSYS[J]. Optical and Quantum Electronics, 2019, 51(4): 92. DOI: 10.1007/s11082-019-1805-0
|
[2] |
Craig S J, Gaskell D R, Rockett P, et al. An experimental technique for measuring the temperature rise during impact testing[J]. Journal de Physique Ⅳ Colloque, 1994, 4: C8(41-46).
|
[3] |
LI Z, J Lambros. Dynamic thermomechanical behavior of fiber reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(6): 537-547. DOI: 10.1016/S1359-835X(99)00102-5
|
[4] |
Rittel D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys[J]. Mechanics of Materials, 2008, 40(8): 629-635. DOI: 10.1016/j.mechmat.2008.03.002
|
[5] |
Hartley K A, Duffy J, Hawley R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics & Physics of Solids, 1987, 35(3): 283-301.
|
[6] |
夏源明, 饶世国. 红外瞬态测温装置及其在冲击拉伸试验中的应用[J]. 实验力学, 1990, 5(2): 170-177.
XIA Yuanming, RAO Shiguo. Infrared transient temperature measuring device and its Application in impact tensile test [J]. Journal of Experimental Mechanics, 1990, 5(2): 170-177.
|
[7] |
陈浩森, 郭亚洲, 朱盛鑫, 等. 多点式高速红外测温系统研制[J]. 实验力学, 2019, 34(2): 240-248.
CHEN Haosen, GUO Yazhou, ZHU Shengxin, et al. Development of multi-point high-speed infrared temperature measurement system[J]. Journal of Experimental Mechanics, 2019, 34(2): 240-248.
|
[8] |
宋旭尧, 董伟, 潘奕捷, 等. 基于集成黑体法1000~1500℃石墨材料高温红外光谱发射率测量[J]. 红外与毫米波学报, 2021, 40(2): 204-213.
SONG Xuyao, DONG Wei, PAN Yijie, et al. Measurement of high temperature infrared spectral emissivity of graphite materials at 1000 ~ 1500℃ based on integrated blackbody method[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 204-213.
|
[9] |
陈伟孟, 苏明义. 红外测温仪与黑体辐射定律[J]. 物理教师, 2021(4): 42.
CHEN Weimeng, SU Mingyi. Infrared thermometer and blackbody radiation law[J]. Physics Teacher, 2021(4): 42.
|
[10] |
晏敏, 彭楚武, 颜永红, 等. 红外测温原理及误差分析[J]. 湖南大学学报: 自然科学版, 2004, 31(5): 110-112. DOI: 10.3321/j.issn:1000-2472.2004.05.025
YAN Min, PENG Chuwu, YAN Yonghong, et al. Principle and error analysis of infrared temperature measurement [J]. Journal of Hunan University: Natural Science Edition, 2004, 31(5): 110-112. DOI: 10.3321/j.issn:1000-2472.2004.05.025
|
[11] |
张宇峰, 邬玉玲, 吴元庆, 等. 表面结构对面源黑体光谱发射率的影响[J]. 光谱学与光谱分析, 2023, 43(2): 389-393.
ZHANG Yufeng, WU Yuling, WU Yuanqing, et al. Effect of surface structure on spectral emissivity of blackbody[J]. Spectroscopy and Spectral Analysis, 2019, 43(2): 389-393.
|
[12] |
贺磊, 侯彬, 王仁浩, 等. 制冷红外光学系统中冷反射的非序列仿真分析[J]. 红外技术, 2023, 45(6): 592-597. http://hwjs.nvir.cn/article/id/d2f9988b-8c83-45c9-879c-bd28cdbda3d1
HE Lei, HOU Bin, WANG Renhao, et al. Non-sequence simulation analysis of cold reflection in refrigerating infrared optical system [J]. Infrared Technology, 2023, 45(6): 592-597. http://hwjs.nvir.cn/article/id/d2f9988b-8c83-45c9-879c-bd28cdbda3d1
|
[13] |
冷丽国, 王模昌, 郁蕴健. 一种宽波段大视场红外辐射探测器[J]. 红外, 2003(8): 4.
LENG Liguo, WANG Mochang, YU Yunjian. A kind of wide-band and wide-field infrared radiation detector[J]. Infrared, 2003(8): 4.
|
[14] |
赵俊, 王晓璇, 李雄军, 等. 昆明物理研究所碲镉汞红外探测器研究进展[J]. 中国科学: 技术科学, 2023, 53(9): 1419-1433.
ZHAO Jun, WANG Xiaoxuan, LI Xiongjun, et al. Research progress of mercury Cadmium telluride infrared detector in Kunming Institute of Physics[J]. Science in China: Technical Science, 2023, 53(9): 1419-1433
|
[15] |
陈军, 习中立, 秦强, 等. 碲镉汞高温红外探测器组件进展[J]. 红外与激光工程, 2023, 52(1): 16-22.
CHEN Jun, XI Zhongli, QIN Qiang, et al. Progress in tellurium cadmium mercury high-temperature infrared detector components[J]. Infrared and Laser Engineering, 2023, 52(1): 16-22.
|
[16] |
刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法[J]. 爆炸与冲击, 2014, 34(4): 471-475.
LIU Yonggui, TANG Zhiping, CUI Shitang. Real-time measurement method of transient temperature under impact load[J]. Explosion and Shock Waves, 2014, 34(4): 471-475.
|
[17] |
戴景民, 曹欣荣, 孙晓刚. 红外辐射式体温计的研制[J]. 红外技术, 2002, 24(3): 4. DOI: 10.3969/j.issn.1001-8891.2002.03.014
DAI Jingmin, CAO Xinrong, SUN Xiaogang. Development of infrared radiation thermometer [J]. Infrared Technology, 2002, 24(3): 4. DOI: 10.3969/j.issn.1001-8891.2002.03.014
|
[18] |
Zehnder A T, Guduru P R, Rosakis A J, et al. Million frames per second infrared imaging system [J]. Review of Scientific Instruments, 2000, 71(10): 3762-3768. DOI: 10.1063/1.1310350
|
[19] |
胡剑虹, 宁飞, 沈湘衡, 等. 目标表面发射率对红外热像仪测温精度的影响[J]. 中国光学与应用光学, 2010, 3(2): 152-156.
HU Jianhong, NING Fei, SHEN Xiangheng, et al. Effect of target surface emissivity on temperature measurement accuracy of infrared thermal imager [J]. Chinese Optics and Applied Optics, 2010, 3(2): 152-156.
|