LI Junbin, LI Dongsheng, WU Shengjuan, ZHOU Xuchang, LI Yanhui, YANG Chunzhang, YANG Wen, JIANG Zhi, CHANG Chao, REN Yang. The Research Progress in Type Ⅱ Superlattices Infrared Focal Plane Array Detectors[J]. Infrared Technology , 2021, 43(11): 1034-1043.
Citation: LI Junbin, LI Dongsheng, WU Shengjuan, ZHOU Xuchang, LI Yanhui, YANG Chunzhang, YANG Wen, JIANG Zhi, CHANG Chao, REN Yang. The Research Progress in Type Ⅱ Superlattices Infrared Focal Plane Array Detectors[J]. Infrared Technology , 2021, 43(11): 1034-1043.

The Research Progress in Type Ⅱ Superlattices Infrared Focal Plane Array Detectors

More Information
  • Received Date: May 17, 2021
  • Revised Date: August 02, 2021
  • In recent years, the type Ⅱ superlattices (T2SL) infrared detector has experienced incredible improvements in material growth, device structure design, device fabrication techniques, which make the T2SL become the most popular infrared detector material, besides HgCdTe. This article briefly introduces the advantage of the T2SL material, summarizes the international research status in T2SL-based photodetectors, reviews the history of technology development of T2SL-based photodetectors and analyzes the drawback of the research of T2SL material and device technology in China.
  • [1]
    Sai-halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Appl. Phys. Lett., 1977, 30: 651. DOI: 10.1063/1.89273
    [2]
    Sai-halasz G A, Esaki L, Harrison W A. InAs/GaSb superlattice energy structure and its semiconductor-semimetal transition[J]. Phys. Rev. B, 1978, 18: 2812. DOI: 10.1103/PhysRevB.18.2812
    [3]
    Smith D L, Mailhiot C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. J. Appl. Phys., 1987, 62: 2545. DOI: 10.1063/1.339468
    [4]
    Johnson J L, Samoska L A, Gossard A C, et al. Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb[J]. J. Appl. Phys., 1996, 80: 1116. DOI: 10.1063/1.362849
    [5]
    Rogalski A, Kopytko M, Martyniuk P. InAs/GaSb type-Ⅱ superlattice infrared detectors: three decades of development[C]//Proc. of SPIE, 2017, 10117: 1017715.
    [6]
    Plis E A, InAs/GaSb type-Ⅱ superlattice detectors[J]. Adv. Electron., 2014, 2014: 246769
    [7]
    尚林涛, 王静, 邢伟荣, 等. 红外探测Ⅱ类超晶格技术概述(一)[J]. 激光与红外, 2021, 51(4): 404. DOI: 10.3969/j.issn.1001-5078.2021.04.002
    [8]
    尚林涛, 王静, 邢伟荣, 等. 红外探测Ⅱ类超晶格技术概述(二)[J]. 激光与红外, 2021, 51(5): 548. DOI: 10.3969/j.issn.1001-5078.2021.05.002
    [9]
    Walther M, Rehm R, Fuchs F, et al, 256×256 Focal Plane Array Midwavelength Infrared Camera Based on InAs/GaSb Short-Period Superlattices[J]. J. Electron. Mater., 2005, 34: 722. DOI: 10.1007/s11664-005-0010-z
    [10]
    Rehm R, Walther M, Schmitz J, et al. 2nd and 3rd Generation Thermal Imagers based on Type-Ⅱ Superlattice Photodiodes[C]//Proc. of SPIE, 2006, 6294: 629404.
    [11]
    Pour S A, HUANG E K, CHEN G, et al. High operating temperature midwave infrared photodiodes and focal plane arrays based on type-Ⅱ InAs/GaSb superlattices[J]. Appl. Phys. Lett., 2011, 98: 143501. DOI: 10.1063/1.3573867
    [12]
    Sharifi H, Roebuck M, Terterian S, et al. Advances in Ⅲ-Ⅴ Bulk and Superlattice-based High Operating Temperature MWIR Detector Technology[C]//Proc. of SPIE, 2017, 10177: 101770U.
    [13]
    TING D Z, Soibel A, Khoshakhlagh A, et al. Mid-w avelength high operating temperature barrier infrared detector and focal plane arrays[J]. Appl. Phys. Lett., 2018, 113: 021101. DOI: 10.1063/1.5033338
    [14]
    Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide type-Ⅱ superlattice barrier infrared detectors[C]//Proc. of SPIE, 2018, 10177: 101770N.
    [15]
    Manurkar P, Ramezani-Darvish S, Nguyen B M, et al. High performance long wavelength infrared mega-pixel focal plane array based on type-Ⅱ superlattices[J]. Appl. Phys. Lett., 2010, 97: 193505. DOI: 10.1063/1.3514244
    [16]
    Razeghi M, Haddadi A, Hoang A M, et al. Antimonide-Based Type Ⅱ Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems[J]. J. Electron. Mater., 2014, 43: 2802-2807. DOI: 10.1007/s11664-014-3080-y
    [17]
    Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of a 1024×1024 Pixel InAs-GaSb Superlattice Focal Plane Array[J]. IEEE Photonic Tech. Lett., 2010, 22: 1856. DOI: 10.1109/LPT.2010.2089677
    [18]
    Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide e-SWIR, MWIR, and LWIR barrier infrared detector and focal plane array development[C]//Proc. of SPIE, 2018, 10624: 1062410.
    [19]
    Klipstein P C, Avnon E, Benny Y, et al. Type-Ⅱ superlattice detector for long-wave infrared imaging[C]//Proc. of SPIE, 2015, 9451: 94510K.
    [20]
    Rehm R, Walther M, Schmitz J, et al. Dual-colour thermal imaging with InAs/GaSb superlattices in mid-wavelength infrared spectral range[J]. Electron. Lett., 2006, 42: 577. DOI: 10.1049/el:20060878
    [21]
    Wörl A, Rutz F, Rehm R, et al. Electro-Optical Properties of InAs/GaSb Superlattice Infrared Photodiodes for Bispectral Detection[C]//Proceedings IRS, 2013: 37-42.
    [22]
    Rutz F, Walther M, Schmitz J, et al. InAs/GaSb superlattices for advanced infrared focal plane arrays[J]. Infrared Phys. Techn., 2009, 52: 344. DOI: 10.1016/j.infrared.2009.09.005
    [23]
    HUANG E K, HOANG M A, CHEN G, et al. Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-Ⅱ superlattices[J]. Opt. Lett., 2012, 37: 4744. DOI: 10.1364/OL.37.004744
    [24]
    Delaunay P Y, Nosho B Z, Gurga A R, et al. Advances in Ⅲ-Ⅴ Based Dual-Band MWIR/LWIR FPAs at HRL[C]//Proc. of SPIE, 2017, 10177: 101770T.
    [25]
    Gurga A R, Nosho B Z, Terterian S, et al. Dual-Band MWIR/LWIR Focal Plane Arrays based on Ⅲ-Ⅴ Strained-Layer Superlattices[C]//Proc. of SPIE, 2018, 10624: 106240O.
    [26]
    Hill C J, Li J V, Mumolo J M, Gunapala S D, MBE grown type-Ⅱ MWIR and LWIR superlattice photodiodes[J]. Infrared Phys. Techn., 2007, 50: 187. DOI: 10.1016/j.infrared.2006.10.033
    [27]
    Ting D Z, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Appl. Phys. Lett., 2009, 95: 023508. DOI: 10.1063/1.3177333
    [28]
    Soibel A, Nguyen J, Höglund L, et al. InAs/GaSb superlattice based long-wavelength infrared detectors: Growth, processing, and characterization[J]. Infrared Phys. Techn., 2011, 54: 247. DOI: 10.1016/j.infrared.2010.12.023
    [29]
    Höglund L, Soibel A, Ting D Z, et al. Minority carrier lifetime and photoluminescence studies of antimony based superlattices[C]//Proc. of SPIE, 2012, 8511: 851106.
    [30]
    Ting D Z, Soibel A, Khoshakhlagh A, et al. Complementary barrier infrared detector (CBIRD) with double tunnel junction contact and quantum dot barrier infrared detector (QD-BIRD)[J]. Infrared Phys. Techn., 2013, 59: 146. DOI: 10.1016/j.infrared.2012.12.030
    [31]
    Ting D Z, Soibel A, Gunapala S D, Hole effective masses and subband splitting in type-Ⅱ superlattice infrared detectors[J]. Appl. Phys. Lett., 2016, 108: 183504. DOI: 10.1063/1.4948387
    [32]
    Ting D Z, Soibel A, Khoshakhlagh A, et al. Antimonide type-Ⅱ superlattice barrier infrared detectors[C]//Proc. of SPIE, 2017, 10177: 101770N.
    [33]
    Gunapala S D, TING D Z, Rafol S, et al. Antimonides T2SL Mid-Wave and Long-Wave Infrared Focal Plane Arrays for Earth Remote Sensing Applications[C]//Proc. of SPIE, 2020, 11288: 112880K.
    [34]
    Wei Y, Gin A, Razeghi M, et al. Type Ⅱ InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm[J]. Appl. Phys. Lett., 2002, 81: 3675. DOI: 10.1063/1.1520699
    [35]
    Nguyen B-M., Razeghi M, Nathan V, et al. Type-Ⅱ "M" Structure Photodiodes: An Alternative Material Design for Mid-Wave to Long Wavelength Infrared Regimes[C]//Proc. of SPIE, 2007, 6479: 64790S.
    [36]
    Delaunay P-Y, Nguyen B M, Hoffman D, et al. 320×256 infrared Focal Plane Array based on Type Ⅱ InAs/GaSb superlattice with a 12 µm cutoff wavelength[C]//Proc. of SPIE, 2007, 6542: 654204.
    [37]
    Livneh Y, Klipstein P C, Klin O, et al. k·p model for the energy dispersions and absorption spectra of InAs/GaSb type-Ⅱ superlattices[J]. Phys. Rev. B, 2012, 86, 235311. DOI: 10.1103/PhysRevB.86.235311
    [38]
    Klipstein P C, Avnon E, Benny Y, et al. InAs/GaSb Type Ⅱ superlattice barrier devices with a low dark current and a high quantum efficiency. [C]//Proc. of SPIE, 2014, 9070: 90700U.
    [39]
    Grein C H, Garland J, Flatte M E. Strained and unstrained layer superlattices for infrared detection[J]. J. Electron. Mater., 2009, 38: 1800. DOI: 10.1007/s11664-009-0757-8
  • Related Articles

    [1]ZHANG Zhou, WANG Liangheng, YANG Yu, LI Yuntao, DING Yanyan, LEI Huawei, LIU Bin, ZHOU Wenhong. Research on Mid-/Long-wavelength Dual Band Infrared Focal Plane Array Photodetector Based on Type-Ⅱ Superlattice[J]. Infrared Technology , 2018, 40(9): 863-867.
    [2]CHEN Weiye, LI Dongsheng, JI Yulong, LI Xiongjun, LI Lihua. Research on Crosstalk Characteristics of Small Pixel-pitch HgCdTe Infrared Focal Plane Arrays[J]. Infrared Technology , 2018, 40(4): 309-315,354.
    [3]SHAO Xiumei, GONG Haimei, LI Xue, FANG Jiaxiong, TANG Hengjing, LI Tao, HUANG Songlei, HUANG Zhangchen. Developments of High Performance Short-wave Infrared InGaAs Focal Plane Detectors[J]. Infrared Technology , 2016, 38(8): 629-635.
    [4]MAO Jingxiang, SHU Chang, WANG Xiaojuan, XIE Gang, HUANG Junbo, ZHOU Jiading. Computation of Dark Currents in Infrared Focal Plane Detector[J]. Infrared Technology , 2016, 38(3): 236-238.
    [5]Review of THz Focal Plane Detector and the Development of Its Imaging Technology[J]. Infrared Technology , 2013, (4): 187-194.
    [6]CAO Yang, JIN Wei-qi, WANG Xia, XU Chao. Development in Shortwave Infrared Focal Plane Array and Application[J]. Infrared Technology , 2009, 31(2): 63-68. DOI: 10.3969/j.issn.1001-8891.2009.02.001
    [7]MAI Lv-bo, JIN Wei-qi. Optimum Developing Mode of Military FPA Thermal Imagers[J]. Infrared Technology , 2007, 29(4): 187-191. DOI: 10.3969/j.issn.1001-8891.2007.04.001
    [8]Indium Bump Reflow in Flip Chip Inter-connection of Infrared Focal Plane Array Detectors[J]. Infrared Technology , 2007, 29(2): 96-98. DOI: 10.3969/j.issn.1001-8891.2007.02.009
    [9]Outline on Development and Application of FPA Thermal Imaging Sets[J]. Infrared Technology , 2006, 28(9): 497-502. DOI: 10.3969/j.issn.1001-8891.2006.09.001
    [10]Long-Wavelength Multiquantum Well Infrared FPA Imaging Technology and Its Applications[J]. Infrared Technology , 2001, 23(6): 30-32. DOI: 10.3969/j.issn.1001-8891.2001.06.008
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (661) PDF downloads (286) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return