HAN Yahui, WANG Zhuo, LIU Jiaxin. Fruit Thermal Imaging Detection Based on Laplacian of Gaussian Algorithm[J]. Infrared Technology , 2021, 43(7): 709-715.
Citation: HAN Yahui, WANG Zhuo, LIU Jiaxin. Fruit Thermal Imaging Detection Based on Laplacian of Gaussian Algorithm[J]. Infrared Technology , 2021, 43(7): 709-715.

Fruit Thermal Imaging Detection Based on Laplacian of Gaussian Algorithm

More Information
  • Received Date: August 05, 2020
  • Revised Date: December 03, 2020
  • Traditional fruit grading and damage detection mostly use sensory evaluation methods. With the development of computer vision technology, automatic computer vision detection and grading technology developed rapidly. To solve the problem of fruit damage detection, we propose a technical scheme for fruit thermal imaging damage detection using image processing technology. In this scheme, the Laplacian of Gaussian (LoG) algorithm was used to detect the damaged parts; a Gaussian convolution template is used to suppress noise. Different convolution filter results were obtained by varying the convolution kernel sizes and σ values to enhance the color degree of the damaged part in the image. Then, the edge detection technology was used to obtain the edge information of the damaged part. In the experiment, apples with local damage were selected as the research object, and five evaluation methods, including references and non-references, were selected to analyze the influence of the convolution process on the edge detection of damaged parts. The experimental results show that the LoG algorithm can effectively detect the damaged parts of fruits during thermal imaging, and the influence of the convolution kernel size on the edge detection results is far greater than the value of σ. By increasing the size of the convolution kernel, the edge information of the damaged parts can be effectively deepened. This study provides a feasible solution for fruit damage area detection.
  • [1]
    李广, 吴限鑫, 王建忠, 等. 水果功能性营养成分及其检测技术研究进展[J]. 农产品质量与安全, 2019(5): 75-80. DOI: 10.3969/j.issn.1674-8255.2019.05.015

    LI Guang, WU Xianxin, WANG Jianzhong, et al. Research progress on functional nutrients in fruit and related testing technology: a reviewv[J]. Quality and Safety of Agro-products, 2019(5): 75-80. DOI: 10.3969/j.issn.1674-8255.2019.05.015
    [2]
    车远侠. 水果科普知识在学前教育中的作用——评《水果的秘密》[J]. 中国果树, 2019(6): 28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS201906051.htm

    CHE Yuaxia. The role of fruit science knowledge in preschool education—Comment on "The Secret of Fruits"[J]. China Fruits, 2019(6): 28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS201906051.htm
    [3]
    李承龙, 鲁明丽. 基于边缘检测技术的果品分级方法研究[J]. 常熟理工学院学报, 2018, 32(2): 78-82. DOI: 10.3969/j.issn.1008-2794.2018.02.017

    LI Chenglong, LU Mingli. Fruits Grading Algorithm Based on Detection Technology[J]. Journal of Changshu Institute of Technology, 2018, 32(2): 78-82. DOI: 10.3969/j.issn.1008-2794.2018.02.017
    [4]
    李娟. 数字处理技术在果品分级中的应用——评《水果品质智能分级技术》[J]. 中国果树, 2019(6): 23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS201906046.htm

    LI Juan. Application of Digital Processing Technology in Fruit Grading——Comment on "Fruit Quality Intelligent Grading Technology"[J]. China Fruits, . 2019(6): 23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS201906046.htm
    [5]
    张妍. 果蔬农产品质量安全现状分析[J]. 农业科技与信息, 2019(22): 34-35, 39. DOI: 10.3969/j.issn.1003-6997.2019.22.015

    ZHANG Yan. Analysis on the Status Quo of Quality and Safety of Fruits, Vegetables and Agricultural Products[J]. Agricultural Science-Technology and Information, 2019(22): 34-35, 39. DOI: 10.3969/j.issn.1003-6997.2019.22.015
    [6]
    肖付才, 靳雯雯. 数字图像边缘检测算法及在农产品检测中的运用[J]. 热带农业工程, 2019, 43(1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-RDZW201901046.htm

    XIAO Fucai, Jin Wenwen. Algorithm of Digital Image Detection and Its Application in Agricultural Product Processing[J]. Tropical Agricultural Engineering, 2019, 43(1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-RDZW201901046.htm
    [7]
    QIU S S, WANG J. Application of Sensory Evaluation, HS-SPME GC‐MS, E‐Nose, and E‐Tongue for Quality Detection in Citrus Fruits[J]. Journal of Food Science, 2015, 80(10): s2296-s2304. DOI: 10.1111/1750-3841.13012
    [8]
    马康凌, 杨绍林, 刀静梅. 中国农产品检测技术现状与展望[J]. 云南农业科技, 2019(2): 60-63. DOI: 10.3969/j.issn.1000-0488.2019.02.024

    MA Kangling YANG Shaolin, DAO Jingmei. Current Status and Prospects of Agricultural Products Testing Technology in China[J]. Yunnan Agricultural Science and Technology, 2019(2): 60-63. DOI: 10.3969/j.issn.1000-0488.2019.02.024
    [9]
    徐赛, 孙潇鹏, 张倩倩. 大型厚皮水果的无损检测技术研究[J]. 农产品质量与安全, 2019(5): 30-35, 48. DOI: 10.3969/j.issn.1674-8255.2019.05.007

    XU Sai, SUN Xiaopeng, ZHANG Qianqian. Research progress on nondestructive testing technology applied to large thick-skinned fruit[J]. Quality and Safety of Agro-products, 2019(5): 30-35, 48. DOI: 10.3969/j.issn.1674-8255.2019.05.007
    [10]
    门洪, 陈鹏, 邹丽娜, 等. 基于主动热红外技术的苹果损伤检测[J]. 中国农机化学报, 2013, 34(6): 220-224, 229. DOI: 10.3969/j.issn.2095-5553.2013.06.053

    MEN Hong, CHEN Peng, ZOU Lina, et al. Apples'damage detection based on active thermal infrared technique[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 220-224, 229 DOI: 10.3969/j.issn.2095-5553.2013.06.053
    [11]
    周建民, 周其显. 基于主动热成像技术的苹果早期机械损伤检测[J]. 农机化研究, 2010, 32(8): 162-165. DOI: 10.3969/j.issn.1003-188X.2010.08.042

    ZHOU Jianmin, ZHOU Qixian. Detection of Early Mechanical Danage inApple Based on Active Thermal Imaging[J]. Journal of Agricultural Mechanization Research, 2010, 32(8): 162-165. DOI: 10.3969/j.issn.1003-188X.2010.08.042
    [12]
    马超. 基于多尺度多方向的图像边缘检测算法研究及其应用[D]. 开封: 河南大学, 2019.

    MA Chao. Research and Application of Image Edge Detection Algorithm Based on Multi-scale and Multi-direction[D]. Kaifeng: Henan University, 2019.
    [13]
    钟艺晶. 一种绝缘子串红外图像的特征提取方法研究[J]. 机电信息, 2020(21): 86-87. DOI: 10.3969/j.issn.1671-0797.2020.21.042

    ZHONG Yijing. Research on a Feature Extraction Method of Infrar-ed Image of Insulator String[J]. Mechanical and Electrical Information, 2020(21): 86-87. DOI: 10.3969/j.issn.1671-0797.2020.21.042
    [14]
    黄玉蕾. 基于形态学滤波结合LOG算法的边缘检测[J]. 计算机测量与控制, 2019, 27(7): 257-260, 284. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201907055.htm

    HUANG Yulei. Edge Detection Based on Morphological Filtering Combined with LOG Algorithm[J]. Computer Measurement & Control, 2019, 27(7): 257-260, 284. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201907055.htm
    [15]
    张阳, 刘缠牢, 卢伟家, 等. 基于LoG算子的双滤波边缘检测算法[J]. 电子测量技术, 2019, 42(4): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201904017.htm

    ZHANG Yang, LIU Chanlao, LU Weijia, et al. Improved double fi-ltering LoG operator edge detection[J]. Electronic Measurement Technology, 2019, 42(4): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201904017.htm
    [16]
    贺萌. 基于自适应形态学的边缘检测及应用[D]. 长沙: 中南大学, 2013.

    HE Meng. Edge Detection Based on an Adaptive Morphology Algorithm and Application[D]. Changsha: Central South University, 2013.
    [17]
    SLANINA M, RICNY V. Estimating PSNR in High Definition H. 264/AVC Video Sequences Using Artificial Neural Networks[J]. Radio Engineering, 2008, 17(3): 103-108. http://www.oalib.com/paper/2490847
  • Related Articles

    [1]WANG Yan, GUO Zhemin, LIU Guoping. A Method for Testing Distortion of an Infrared Imaging System[J]. Infrared Technology , 2021, 43(11): 1061-1066.
    [2]Study on Performance Computing and Simulation of Infrared Imaging System under Light Interference[J]. Infrared Technology , 2015, (2): 110-113.
    [3]Thermal Design of One Kind of Infrared Imaging System Using ICEPEAK Software[J]. Infrared Technology , 2013, (4): 211-216.
    [4]Infrared Imaging System Design Based on Digital TDI Technology[J]. Infrared Technology , 2013, (4): 207-210.
    [5]Toward Digitization in Infrared Focal Plane Array[J]. Infrared Technology , 2013, (4): 195-201.
    [6]ZOU Qian-jin, DAI Rui, LIU Xin. The Noise Measurement Simulation of Infrared Imaging System[J]. Infrared Technology , 2008, 30(6): 346-350. DOI: 10.3969/j.issn.1001-8891.2008.06.010
    [7]Image Stabilization of Infrared Systems[J]. Infrared Technology , 2004, 26(5): 49-51. DOI: 10.3969/j.issn.1001-8891.2004.05.013
    [8]General Measuring Techniques of Infrared Imaging System[J]. Infrared Technology , 2003, 25(5): 37-40,44. DOI: 10.3969/j.issn.1001-8891.2003.05.010
    [9]A Analysis and Estimate on Image Spatial Noise of IR Imaging System[J]. Infrared Technology , 2001, 23(3): 19-22,25. DOI: 10.3969/j.issn.1001-8891.2001.03.006

Catalog

    Article views (316) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return