Citation: | FANG Hongyi, LUO Jie, WANG Dengkui, YANG Jianhua, ZENG Min, ZOU Yuanlu, HU Nantao, YANG Zhi. Infrared Temperature Measurement Calibration and Temperature Field Reconstruction of Aero-Engine Blade Surface[J]. Infrared Technology , 2024, 46(8): 940-946. |
With the vigorous development of the aviation industry in China, significant progress has been made in aeroengine technology. As key components of aeroengines, the development of aeroengine blades is crucial. Real-time and accurate monitoring of the blade temperature will help promote breakthroughs in related technologies for aeroengine blades. This study proposes a temperature calibration algorithm and three-dimensional reconstruction strategy for the temperature field based on infrared temperature measurements for aeroengine blade temperature monitoring. Based on the function fitting ability of the multilayer perceptron network, the functional relationship between the precise temperature of the target point and its surrounding temperature distribution is established, and the error of infrared temperature measurement is controlled within 1.24 ℃. On this basis, through an innovative projection method and 3D point cloud normal vector estimation, the position mapping from 2D infrared image to 3D space has been achieved. We achieved a three-dimensional temperature field reconstruction via single-view infrared images through a simple process without dependence on multiview images.
[1] |
胡承波. 中国航空制造业企业技术创新长效机制研究[D]. 武汉: 武汉理工大学, 2011.
HU Chengbo. The Research on the Long-term Mechanism of Enterprise Technological Innovation in Aviation Manufacturing of China[D]. Wuhan: Wuhan University of Technology, 2011.
|
[2] |
王魁汉, 李友, 王柏忠. 温度测量技术的最新动态及特殊与实用测温技术[J]. 自动化仪表, 2001(8): 3-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB200108000.htm
WANG Kuihan, LI You, WANG Baizhong. The latest development status of the technology of the temperature measurement and the unique and practical measurement technology[J]. Process Automation Instrumentation, 2001(8): 3-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB200108000.htm
|
[3] |
YU Y B, CHOW W K. Review on an advanced high-temperature measurement technology: the optical fiber thermometry[J]. Journal of Thermodynamics, 2009(1): 823482.
|
[4] |
张志学, 刘忠奎, 张玉新, 等. 航空发动机壁温测量方法综述[C]// 2015航空试验测试技术学术交流会论文集, 2015: 139-142.
ZHANG Zhixue, LIU Zhongkui, ZHANG Yuxin, et al. Survey on the wall temperature measurement of aeroengine[C]//Proceedings of the 2015 Aviation Test Technology Academic Exchange Conference, 2015: 139-142.
|
[5] |
唐文彬. 某型涡桨发动机燃烧室温度场热电偶动态响应规律的技术研究[D]. 南京: 南京航空航天大学, 2013.
TANG Wenbin. Research on Dynamic Response Rule of Thermocouple for One Type of Turboprop Engines Combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
|
[6] |
黄名海, 臧树升, 葛冰, 等. 热风洞中涡轮叶片温度场红外热像测量方法[J]. 航空动力学报, 2014, 29(11): 2679-2683. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201411019.htm
HUANG Minghai, ZANG Shusheng, GE Bing, et al. Method of infrared thermography measurement for temperature field of turbine vane in hot wind tunnel[J]. Journal of Aerospace Power, 2014, 29(11): 2679-2683. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201411019.htm
|
[7] |
CHRISTENSEN L, CELESTINA R, SPERLING S, et al. Infrared temperature measurements of the blade tip for a turbine operating at corrected engine conditions[J]. Turbomach, 2021, 143(10): 101005. DOI: 10.1115/1.4050675
|
[8] |
肖冬杰, 李其申, 周翠岭. 基于稀疏表示的自适应图像融合方法研究[J]. 计算机应用与软件, 2014, 31(3): 203-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201403054.htm
XIAO Dongjie, LI Qishen, ZHOU Cuiling. Study on sparse representation based adaptive image fusion methods[J]. Computer Applications and Software, 2014, 31(3): 203-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201403054.htm
|
[9] |
刘兆栋. 基于稀疏表示理论的图像去噪与融合算法研究[D]. 重庆: 重庆大学, 2016.
LIU Zhaodong. Research on Image Denoising and Fusion Based on Sparse Representation[D]. Chongqing: Chongqing University, 2016.
|
[10] |
胡建文. 基于多尺度滤波和稀疏表示的图像融合方法研究[D]. 长沙: 湖南大学, 2013.
HU Jianwen. The Research on Image Fusion Based on Multiscale Filter and Sparse Representation[D]. Changsha: Hunan University, 2013.
|
[11] |
肖传民, 亓琳, 史泽林. 多尺度双边滤波及其在图像分割中的应用[J]. 信息与控制, 2009, 38(2): 229-233. DOI: 10.3969/j.issn.1002-0411.2009.02.018
XIAO Chuanmin, QI Lin, SHI Zelin. Multi-scale bilateral filtering with application to image segmentation[J]. Information and Control, 2009, 38(2): 229-233. DOI: 10.3969/j.issn.1002-0411.2009.02.018
|
[12] |
王华伟. 基于红外热成像的温度场测量关键技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013.
WANG Huawei. Research on the Key Technologies of Temperature Field Measurement Based on Thermal Infrared Imager[D]. Xi'an: Xi'an Institute of Optics & Precision Mechnics, Chinese Academy of Sciences, 2013.
|
[13] |
李云红. 基于红外热像仪的温度测量技术及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
LI Yunhong. Research on Temperature Measurement Technology and Application Based on Infrared Thermal Imager[D]. Harbin: Harbin Institute of Technology, 2010.
|
[14] |
程胜. 人体三维远红外成像及其测温的研究[D]. 上海: 上海交通大学, 2009.
CHENG Sheng. Three-Dimensional Far-infrared Thermal Imaging and Its Temperature Measurement for Medical Applications[D]. Shanghai: Shanghai Jiao Tong University, 2009.
|
[15] |
李勇. 基于红外测温的炉内温度场重构方法初步研究[D]. 北京: 华北电力大学, 2010.
LI Yong. Research on Reconstruction Algorithm of Temperature Field Based on Infrared Radiation Measurement in Boiler[D]. Beijing: North China Electric Power University, 2010.
|
1. |
卢泉,黄粒峰,胡梦竹. 基于改进直方图均衡的SF6泄漏区域增强算法. 红外技术. 2024(04): 437-442 .
![]() | |
2. |
满林林,孙毅,李淑梅. 基于激光成像检测的GIS开关站SF_6气体泄露检测方法. 电器工业. 2024(11): 23-26+41 .
![]() | |
3. |
张泽林,吴玲玲,陈靖,王谦,张博渊. 红外成像的重气泄漏实时定位方法. 西安工业大学学报. 2024(06): 754-763 .
![]() | |
4. |
宋晓燕,李强,张峰,韩菲,王超冉. 电力基坑多气体浓度检测系统的研究与设计. 微型电脑应用. 2024(12): 183-186 .
![]() | |
5. |
袁建华,陈广生,张天宇,黄淘,陈轩. 基于红外与可见光图像融合的GIS设备气体泄漏识别研究. 国外电子测量技术. 2024(12): 231-239 .
![]() | |
6. |
曹江涛,李泉成,班铭,刘继臻,姬晓飞. 基于红外光谱成像的危险气体泄漏检测技术综述. 科学技术与工程. 2023(19): 8050-8060 .
![]() | |
7. |
刘赫,赵天成,李嘉帅,杨代勇,袁小翠,许志浩. 基于三直方图均衡的SF_6红外图像对比度增强方法. 红外技术. 2023(10): 1118-1125 .
![]() | |
8. |
张红星,眭霄翔,王海军,刘中华,陈怀东,张海峰. 凝汽器管道壁面泄漏流场数值模拟研究. 真空. 2023(06): 15-21 .
![]() | |
9. |
李强,张峰,宋晓燕,韩菲,梁纲. 基于数值分析的电力基坑气体分布检测分析. 微型电脑应用. 2023(11): 91-94 .
![]() |