Citation: | WANG Yuping, ZENG Yi. Weak and Small Infrared Target Detection Combined With Frame Difference Kernel Correlation Filtering[J]. Infrared Technology , 2023, 45(7): 755-767. |
[1] |
CHENG Y H, WANG J. A motion image detection method based on the inter-frame difference method[J]. Applied Mechanics & Materials, 2014, 490: 1283-1286.
|
[2] |
HE L, GE L. CamShift target tracking based on the combination of inter-frame difference and background difference[C]//2018 37th Chinese Control Conference(CCC). IEEE, 2018: 9461-9465.
|
[3] |
Novikov A, Reyes-Pérez P. Optimal multistage sequential hypothesis testing[J]. Journal of Statistical Planning and Inference, 2020, 205: 219-230. DOI: 10.1016/j.jspi.2019.07.005
|
[4] |
Shamsadin Nejad A, Zaimbashi A. Multistage target detector based on M-ary hypothesis testing approach in multi-channel passive bistatic radars to improve target range resolution[J]. Tabriz Journal of Electrical Engineering, 2019, 49(3): 1141-1152.
|
[5] |
FAN X, XU Z, ZHANG J, et al. Infrared dim and small targets detection method based on local energy center of sequential image[J]. Mathematical Problems in Engineering, 2017, 2017: 4572147.
|
[6] |
CHEN H, ZHANG H, YANG Y, et al. Small target detection based on infrared image adaptive[J]. International Journal on Smart Sensing & Intelligent Systems, 2015, 8(1): 497-515.
|
[7] |
REN X, WANG J, MA T, et al. Infrared dim and small target detection based on three-dimensional collaborative filtering and spatial inversion modeling[J]. Infrared Physics & Technology, 2019, 101: 13-24.
|
[8] |
LIU X, ZUO Z. A dim small infrared moving target detection algorithm based on improved three-dimensional directional filtering[C]//Chinese Conference on Image and Graphics Technologies. Springer, Berlin, Heidelberg, 2013: 102-108.
|
[9] |
DU P, Hamdulla A. Infrared moving small-target detection using spatial-temporal local difference measure[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(10): 1817-1821.
|
[10] |
DENG L, ZHANG J, ZHU H. Infrared moving point target detection using a spatial-temporal filter[J]. Infrared Physics & Technology, 2018, 95: 122-127.
|
[11] |
ZHAO B, XIAO S, LU H, et al. Spatial-temporal local contrast for moving point target detection in space-based infrared imaging system[J]. Infrared Physics & Technology, 2018, 95: 53-60.
|
[12] |
DENG L, ZHU H, TAO C, et al. Infrared moving point target detection based on spatial-temporal local contrast filter[J]. Infrared Physics & Technology, 2016, 76: 168-173.
|
[13] |
CHO J, JUNG Y, KIM D S, et al. Moving object detection based on optical flow estimation and a Gaussian mixture model for advanced driver assistance systems[J]. Sensors, 2019, 19(14): 3217-3231. DOI: 10.3390/s19143217
|
[14] |
ZHANG Y, ZHENG J, ZHANG C, et al. An effective motion object detection method using optical flow estimation under a moving camera[J]. Journal of Visual Communication and Image Representation, 2018, 55: 215-228. DOI: 10.1016/j.jvcir.2018.06.006
|
[15] |
JIAN Q, QIAN C, Wei-Xian Q. A detection algorithm for dim and small infrared target based on the optical flow estimation and the adaptive background suppression[J]. Acta Photonica Sinica, 2011, 40(3): 476-482. DOI: 10.3788/gzxb20114003.0476
|
[16] |
Shin J, Kim H, Kim D, et al. Fast and robust object tracking using tracking failure detection in kernelized correlation filter[J]. Applied Sciences, 2020, 10(2): 713-727. DOI: 10.3390/app10020713
|
[17] |
YU T, MO B, LIU F, et al. Robust thermal infrared object tracking with continuous correlation filters and adaptive feature fusion[J]. Infrared Physics & Technology, 2019, 98: 69-81.
|
[18] |
Uzkent B, Rangnekar A, Hoffman M J. Tracking in aerial hyperspectral videos using deep kernelized correlation filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 449-461.
|
[19] |
YUAN D, ZHANG X, LIU J, et al. A multiple feature fused model for visual object tracking via correlation filters[J]. Multimedia Tools and Applications, 2019, 78(19): 27271-27290. DOI: 10.1007/s11042-019-07828-2
|
[20] |
MENG Y, MA C, AN W. Infrared object tracking method based on kernel correlation filters[C]//Journal of Physics: Conference Series, 2021, 2035(1): 012038.
|
[21] |
YANG X, LI S, YU J, et al. GF-KCF: Aerial infrared target tracking algorithm based on kernel correlation filters under complex interference environment[J]. Infrared Physics & Technology, 2021, 119: 103958.
|
[22] |
Hsieh T H, CHOU C L, LAN Y P, et al. Fast and robust infrared image small target detection based on the convolution of layered gradient Kernel[J]. IEEE Access, 2021, 9: 94889-94900. DOI: 10.1109/ACCESS.2021.3089376
|
[23] |
LI Y, ZHANG Y. Robust infrared small target detection using local steering kernel reconstruction[J]. Pattern Recognition, 2018, 77: 113-125. DOI: 10.1016/j.patcog.2017.12.012
|
[24] |
Henriques J F, Rui C, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3): 583-596.
|
[25] |
杜文汉, 李东兴, 王倩楠, 等. 融合改进帧差和边缘提取算法的运动目标检测[J]. 科学技术与工程, 2022, 22(5): 1944-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202205026.htm
DU W H, LI D X, WANG Q N, et al. Moving target detection based on improved frame difference and edge extraction algorithm[J]. Science Technology and Engineering, 2022, 22(5): 1944-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202205026.htm
|
[26] |
LIU S, LIU D, Srivastava G, et al. Overview and methods of correlation filter algorithms in object tracking[J]. Complex & Intelligent Systems, 2020(3): 1895-1917.
|
[27] |
WEI Y, YOU X, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226. DOI: 10.1016/j.patcog.2016.04.002
|
[28] |
HAN J, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. DOI: 10.1109/LGRS.2018.2790909
|
[29] |
YU T, MO B, LIU F, et al. Robust thermal infrared object tracking with continuous correlation filters and adaptive feature fusion[J]. Infrared Physics & Technology, 2019, 98: 69-81.
|
[1] | YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458. |
[2] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[3] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[4] | DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764. |
[5] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[6] | GAO Meiling, DUAN Jin, ZHAO Weiqiang, HU Qi. Near-infrared Image Colorization Method Based on a Dilated Global Attention Mechanism[J]. Infrared Technology , 2023, 45(10): 1096-1105. |
[7] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[8] | HE Le, LI Zhongwei, LUO Cai, REN Peng, SUI Hao. Infrared and Visible Image Fusion Based on Dilated Convolution and Dual Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 732-738. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |
1. |
高于山,邓瑛,张菁. 临近空间光学载荷设计关键指标与技术综述. 空天技术. 2023(03): 88-93 .
![]() | |
2. |
马俊,朱猛,王才喜,史文杰. 临近空间光电探测技术与发展展望. 空天技术. 2022(02): 85-96 .
![]() |