YANG Xu, LI Yanhong, ZHANG Yuanjian, ZHU Dalue, ZHANG Zhiqiang. Optimal Design of Dual-Band Off-Axis Three-Reflection Optical System Based on Free-form Surface[J]. Infrared Technology , 2022, 44(11): 1195-1202.
Citation: YANG Xu, LI Yanhong, ZHANG Yuanjian, ZHU Dalue, ZHANG Zhiqiang. Optimal Design of Dual-Band Off-Axis Three-Reflection Optical System Based on Free-form Surface[J]. Infrared Technology , 2022, 44(11): 1195-1202.

Optimal Design of Dual-Band Off-Axis Three-Reflection Optical System Based on Free-form Surface

More Information
  • Received Date: November 24, 2021
  • Revised Date: January 24, 2022
  • In the field of aviation remote sensing, the two-band optical system is the most representative optical system. The dual-band system can detect both the background signal and the target signal to obtain more accurate information compared to a single-band system. Compared with the off-axial reflection system, the optical system is miniaturized while satisfying a longer focal length. Simultaneously, choosing the reflection system of a free surface as the blueprint of telefocal length system design has several advantages, including a large field of view angle, easy optical road folding, and a high system imaging quality, and can achieve high-resolution imaging and light weight design of the system. The system was added to the free-form surface for better image quality. The effective focal length of the system is 2000 mm, the relative aperture is 1/2, the field of view is 6°×1°, and the working bands are 3-5 μm and 8-2 μm. The selected model is the LA6110 non-refrigeration type detector. The design results show that the free-form surface can greatly improve the imaging quality of the system, and the modulation transfer function in the whole field of view can achieve a modulation transfer function greater than 0.3 at 14 lp/mm.
  • [1]
    赵秀丽. 红外光学系统设计[M]. 北京: 机械工业出版社, 1986: 3-4.

    ZHAO Xiuli. Design of Infrared Optical System[M]. Beijing: China Machine Press, 1986: 3-4.
    [2]
    TAO Guangming, Shabahang Soroush, REN He, et al. Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission[J]. Optics Letters, 2014, 39(13): 4009. DOI: 10.1364/OL.39.004009
    [3]
    贾孟, 薛常喜. 基于Q-type非球面的双波段红外光学系统设计[J]. 光学学报, 2019, 39(10): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201910032.htm

    JIA Meng, XUE Changxi. Design of dual and infrared optical system with q-type asphere[J]. Acta Optica Sinica, 2019, 39(10): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201910032.htm
    [4]
    陈建发, 潘枝峰, 王合龙, 等. 基于制冷型探测器的双波段红外光学系统无热化设计[J]. 电光与控制, 2019, 26(10): 83-86. DOI: 10.3969/j.issn.1671-637X.2019.10.017

    CHEN Jianfa, PAN Zhifeng, WANG Helong, et al. Athermalization design of a dual-band infrared optical system with cryogenic detector[J]. Electronics Optics & Control, 2019, 26(10): 83-86. DOI: 10.3969/j.issn.1671-637X.2019.10.017
    [5]
    王昊, 康福增, 赵卫, 等. 一种红外双波段衍射望远镜的光学设计[J]. 红外与毫米波学报, 2019, 38(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201901008.htm

    WANG Hao, KANG Fuzeng, ZHAO Wei, et al. An optical design for dual-band infrared diffractive telescope[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201901008.htm
    [6]
    张欣婷, 安志勇. 双层谐衍射双波段红外消热差光学系统设计[J]. 光学学报, 2013, 33(6): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201306041.htm

    ZHANG Xinting, AN Zhiyong. Design of infrared athermal optical system for dual- and with double- ayer harmonic diffraction element[J]. Acta Optica Sinica, 2013, 33(6): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201306041.htm
    [7]
    DA M, MI S, MENG M. Dual-band co-aperture infrared optical system design for irradiance measurement[C]// International Symposium on Optoelectronic Technology and Application 2014: Infrared Technology and Applications. International Society for Optics and Photonics, 2014: 930024.
    [8]
    任志广, 李旭阳, 倪栋伟. 大相对孔径、大视场、紧凑型空间光学系统设计[J]. 光学学报, 2019, 39(9): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909038.htm

    REN Zhiguang, LI Xuyang, NI Dongwei. Compact space optical system design with lame relative aperture and field of view[J]. Acta Optica Sinica, 2019, 39(9): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909038.htm
    [9]
    孟庆宇, 汪洪源, 王严, 等. 大线视场自由曲面离轴三反光学系统设计[J]. 红外与激光工程, 2016, 45(10): 1018002-1018002(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610024.htm

    MENG Qingyu, WANG Hongyuan, WANG Yan, et al. Off-axis three-mirror freeform optical system with large linear field of view[J]. Infrared and Laser Engineering, 2016, 45(10): 1018002-1018002(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610024.htm
    [10]
    王志坚, 王鹏, 刘泉. 动态光学[M]. 北京: 国防工业出版社, 2015: 10-15.

    WANG Zhijian, WANG Peng, LIU Quan. Dymanic Optics[M]. Beijing: National Defense Industry Press, 2015: 10-15.
    [11]
    陈丽, 刘莉, 赵知诚, 等. 长焦距同轴四反射镜光学系统设计[J]. 红外与激光工程, 2019, 48(1): 118002-0118002(10). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901030.htm

    CHEN Li, LIU Li, ZHAO Zhicheng, et al. Design of coaxial four-mirror anastigmat optical system with long focal length[J]. Infrared and Laser Engineering, 2019, 48(1): 118002-0118002(10). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901030.htm
    [12]
    操超, 廖志远, 白瑜, 等. 基于矢量像差理论的离轴反射光学系统初始结构设计[J]. 物理学报, 2019, 68(13): 134-201. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201913012.htm

    CAO Chao, LIAO Zhiyuan, BAI Yu, et al. Initial configuration design of off-axis reflective optical system based on vector aberration theory[J]. Acta Phys. Sin. , 2019, 68(13): 134-201. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201913012.htm
    [13]
    杨旭, 牟达, 陈炳旭, 等. 基于太赫兹波段的三反变焦系统设计[J]. 长春理工大学学报: 自然科学版, 2021, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM202101001.htm

    YANG Xu, MOU Da, CHEN Bingxu, et al. Design of three based on reflective zoom system terahertz band[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2021, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM202101001.htm
    [14]
    Keith S Krause. Relative radiometric characterization and performance of the QuickBird high-resolution commercial imaging satellite[C/OL]// Proceedings of SPIE - The International Society for Optical Engineering, 2004, https://doi.org/10.1117/12.558949.
    [15]
    姜宏佳. 大尺寸离轴反射式相机的仿真集成分析方法[J]. 航天返回与遥感, 2018, 39(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201801013.htm

    JIANG Hongjia. Detectability verification technology study in lab of instantaneous random point-source multi-target detecting camera on the geostationary orbit[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201801013.htm
    [16]
    Holland W, Macintosh M, Fairley A, et al. SCUBA-2: a 10, 000-pixel submillimeter camera for the James clerk maxwell telescope[J]. Millimeter & Submillimeter Detectors & Instrumentation for Astronomy III, 2006, 6275: 62751E.
    [17]
    王文生. 应用光学[M]. 武汉: 华中科技大学出版社, 2010: 292-293.

    WANG Wensheng. Applied Optics[M]. Wuhan: Huazhong University of Science and Technology Press, 2010: 292-293.
    [18]
    王之江. 实用光学技术手册[M]. 北京: 机械工业出版社, 2006: 400-402.

    WANG Zhijiang. Practical Optical Technical Manual[M]. Beijing: China Machine Press, 2006: 400-402.
  • Related Articles

    [1]GAO Youtao. Structural Improvement Design of an Infrared Thermal Imager[J]. Infrared Technology , 2022, 44(2): 145-150.
    [2]TANG Shiyang, ZHU Jiangping, ZHANG Jianwei. Infrared Structured Light for 3D Face Reconstruction[J]. Infrared Technology , 2022, 44(1): 28-32.
    [3]LI Junbin, LIU Aiming, JIANG Zhi, KONG Jincheng, LI Dongsheng, LI Yanhui, ZHOU Xuchang, YANG Wen. Investigation of Energy Band Structures of InAs/GaSb and M Structure Superlattices[J]. Infrared Technology , 2021, 43(7): 622-628.
    [4]WU Yujie, CHANG Ming, YANG Ruobing, HU Mengxuan, DONG Yan, YU Hongwei. Three-step Infrared Spectrum of Dacron Crystal Structure[J]. Infrared Technology , 2020, 42(6): 589-597.
    [5]SONG Xincheng, ZHANG Yu, JIA Yuchao, HUANG Pan, JIN Liman, WANG Caiping, LUO Hong. Stray Light Analysis and Suppression Structure Design of Transmissive Infrared Lens[J]. Infrared Technology , 2018, 40(11): 1065-1070.
    [6]CHE Zhixin, TIAN Changhui, CHEN Xiaoli, WANG Binke, HAN Wenliang. Design of an Infrared Periodic Absorbent Structure[J]. Infrared Technology , 2018, 40(4): 327-331.
    [7]CHEN Wenliang, DONG Qingliang, LIU Feng, WANG Xiangjun, WU Fanlu. Fast Calibration Method of Multiple Line Structured Light and the Camera[J]. Infrared Technology , 2017, 39(1): 81-85.
    [8]ZHANG Hongyu, PU Enchang, YANG Lin, DONG Haixiang, HE Shiwei, CHEN Zhong. Rethinking the Structure Design of Thermal Sights[J]. Infrared Technology , 2016, 38(6): 505-508.
    [9]ZHANG Dongge, FU Yutian. Stray Radiation Analysis For Mid-wave Fish Eye Infrared Lens[J]. Infrared Technology , 2016, 38(2): 117-120.
    [10]KONG Ling-jie, HE Ting, CHEN Dong-hong, YAN Le, ZHANG Peng, CHOU Xiu-jian. Design and Analysis of Directional Radiation Structure of MEMS Infrared Light Source[J]. Infrared Technology , 2015, (6): 492-495.
  • Cited by

    Periodical cited type(4)

    1. 郭浩,杨建峰,马小龙,吕娟. 用于火星沙尘暴探测的广角多光谱成像光学系统设计. 光子学报. 2025(04): 63-77 .
    2. 刘一帆,周峰,胡斌,晋利兵. 基于Q型非球面的全景环带红外光学系统设计. 航天返回与遥感. 2024(01): 90-98 .
    3. 王彩霞,陈洪耀,司孝龙,李鑫,李佳伟,张黎明,包诗薇. 多波段鱼眼镜头相机实验室几何定标方法. 光子学报. 2024(08): 187-200 .
    4. 上官佳伟,李永亮,冯海龙,张馨元,王宁,李佳航. 大视场医用电子内窥镜光学成像系统研究综述. 激光杂志. 2024(08): 1-5 .

    Other cited types(3)

Catalog

    Article views (154) PDF downloads (64) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return