Citation: | SHI Xiangdong, LAI Xiaoyan. Design of Field-Effect Transistor Quenching Circuit for Geiger-Mode Avalanche Photodiodes[J]. Infrared Technology , 2021, 43(1): 56-59,78. |
[1] |
王灿.面向雪崩光电二极管的光子计数读出电路设计[D].南京: 东南大学, 2017.
WANG Can. Design of Photon Counting Readout Integrated Circuit for Avalanche Photondiode[D]. Nanjing: Southeast University, 2017.
|
[2] |
刘俊良, 李永富, 张春芳, 等.基于APD-PIN结电容平衡电路的门控单光子探测器[J].红外与激光工程, 2015, 44(11): 3181-3185. DOI: 10.3969/j.issn.1007-2276.2015.11.003
LIU Junliang, LI Yongfu, ZHANG Chunfang, et al. Single-photon detector based on GPQC with balanced APD-PIN junction capacitance[J]. Infrared and Laser Engineering, 2015, 44(11): 3181-3185. DOI: 10.3969/j.issn.1007-2276.2015.11.003
|
[3] |
郑丽霞.盖革模式雪崩光电二极管阵列读出电路的研究与实现[D].南京: 东南大学, 2017.
ZHENG Lixia. Research and Implementation of GM-avalanche Photodiode Array Readout Dircuit[D]. Nanjing: Southeast University, 2017.
|
[4] |
Haitz R H. Model for the electrical behavior of microplasma[J]. Journal of Applied Physics, 1964, 35(5): 1370-1376. DOI: 10.1063/1.1713636
|
[5] |
Haitz R H. Mechanisms contributing to the noise pulse rate of avalanche diodes[J]. Journal of Applied Physics, 1965, 36(10): 3123-3131. DOI: 10.1063/1.1702936
|
[6] |
Cova S, Longoni A, Andreoni A. Towards picoseconds resolution with single-photon avalanche diodes[J]. Review of Scientific Instruments, 1981, 52(3): 408-412. DOI: 10.1063/1.1136594
|
[7] |
R H Haitz. Model for the electrical behavior of microplasma[J]. Journal of Applied Physics, 1964, 35(5): 1370-1376. DOI: 10.1063/1.1713636
|
[8] |
Tisa S, Zappa F, Tosi A, et al. Electronics for single photon avalanche diode arrays[J]. Sensors and Actuators, 2007, 140(1): 113-122. DOI: 10.1016/j.sna.2007.06.022
|
[1] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[2] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[3] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[4] | LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801. |
[5] | DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764. |
[6] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[7] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[8] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |
1. |
赵洪山,王惠东,刘婧萱,杨伟新,李忠航,林诗雨,余洋,吕廷彦. 考虑局部纹理特征和全局温度分布的电力设备红外图像超分辨率重建方法. 电力系统保护与控制. 2025(02): 89-99 .
![]() | |
2. |
徐浙君. 基于优化深度学习的低照度图像超分辨率重建方法的研究. 科技通报. 2024(04): 39-43+53 .
![]() |