ZHANG Fangfang, CAO Jiahui, WANG Haijing, ZHAO Pengbo. Anti-Occlusion Moving Target Tracking Algorithm Based on Multifeature Self-Adaptive Fusion[J]. Infrared Technology , 2023, 45(2): 150-160.
Citation: ZHANG Fangfang, CAO Jiahui, WANG Haijing, ZHAO Pengbo. Anti-Occlusion Moving Target Tracking Algorithm Based on Multifeature Self-Adaptive Fusion[J]. Infrared Technology , 2023, 45(2): 150-160.

Anti-Occlusion Moving Target Tracking Algorithm Based on Multifeature Self-Adaptive Fusion

More Information
  • Received Date: March 23, 2022
  • Revised Date: May 07, 2022
  • In view of the current target tracking algorithm, it is difficult to effectively track the target when it is blurred or occluded; therefore, an anti-occlusion algorithm based on multi feature adaptive fusion is proposed in this study. First, the gradient direction histogram feature HOG and color histogram feature are extracted, and the correlation filtering response of the two features is adaptively fused to maximize the tracking quality. In the tracking process, a high-quality filter template is stored according to the quality of the response map, and the quality difference between the high-quality template and normal update template is used to detect the occlusion of the target. When the target occlusion disappears, the template of the tracker traces back to the high-quality template to retrack the target. According to the experimental results for OTB100 and UAV123, this algorithm has a better performance than other similar correlation filtering algorithms and can still track well in the case of target occlusion.
  • [1]
    陈万敏, 振宏, 刘辉. 结合时空上下文信息的相关滤波目标跟踪方法[J]. 红外技术, 2019, 41(9): 866-873. http://hwjs.nvir.cn/article/id/hwjs201909011

    CHEN Wanmin, ZHEN Hong, LIU Hui. Correlation filtering target tracking method based on spatiotemporal context information[J]. Infrared Technology, 2019, 41(9): 866-873. http://hwjs.nvir.cn/article/id/hwjs201909011
    [2]
    陈志旺, 王航, 刘旺, 等. 抗遮挡与尺度自适应的改进KCF跟踪算法[J]. 控制与决策, 2021, 36(2): 457-462. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102024.htm

    CHEN Zhiwang, WANG Hang, LIU Wang, et al. Improved KCF tracking algorithm based on anti-occlusion and scale adaptation[J]. Control and Decision, 2021, 36(2): 457-462 https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102024.htm
    [3]
    陈婧, 孙玉娟, 周万军. 融合运动模型与联合置信度量的改进核相关跟踪算法[J]. 红外技术, 2018, 40(11): 1106-1111. http://hwjs.nvir.cn/article/id/hwjs201811015

    CHEN Jing, SUN Yujuan, ZHOU Wangjun. An improved kernel correlation tracking algorithm combining motion model and joint confidence measure[J]. Infrared Technology, 2018, 40(11): 1106-1111. http://hwjs.nvir.cn/article/id/hwjs201811015
    [4]
    Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]//European Conference on Computer Vision, 2016: 850-865.
    [5]
    LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980.
    [6]
    Valmadre J, Bertinetto L, Henriques J, et al. End-to-end representation learning for correlation filter based tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2805-2813.
    [7]
    Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550.
    [8]
    Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision, 2012: 702-715.
    [9]
    Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
    [10]
    Danelljan M, Hager G, Shahbaz Khan F, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 4310-4318.
    [11]
    Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1401-1409.
    [12]
    LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4904-4913.
    [13]
    LI Y, FU C, DING F, et al. Autotrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 11923-11932.
    [14]
    Bhat G, Johnander J, Danelljan M, et al. Unveiling the power of deep tracking[C]//Proceedings of the European Conference on Computer Vision, 2018: 483-498.
    [15]
    WANG M, LIU Y, HUANG Z. Large margin object tracking with circulant feature maps[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4021-4029.
    [16]
    WU Y, Lim J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9): 1834-1848.
    [17]
    Mueller M, Smith N, Ghanem B. A benchmark and simulator for UAV tracking[C]//European Conference on Computer Vision, 2016: 445-461.
    [18]
    WANG N, ZHOU W, TIAN Q, et al. Multi-cue correlation filters for robust visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4844-4853.
  • Related Articles

    [1]JIN Yongwei, LIU Chunlong. Sensitivity Analysis of Thermal Design Parameters of High-Sensitivity Optical Detection Module[J]. Infrared Technology , 2025, 47(2): 141-147.
    [2]ZHANG Jiahong, JIA Zhuohang, GUO Liang, PENG Bo, WANG Weicheng. Thermal Design and Simulation Verification of High-precision Integrated Star Sensor in Near-Earth Orbit[J]. Infrared Technology , 2024, 46(4): 400-405.
    [3]WANG Shang, ZHANG Xingxiang, ZHU Junqing. Design and Analysis of All Aluminum Alloy Optical Mechanical Structure of Space Cameras[J]. Infrared Technology , 2022, 44(4): 364-370.
    [4]DU Yimin, JIA Xuezhi, AN Yuan, KE Shanliang. Design and Analysis of Focusing Mechanism for a High Resolution Space Camera[J]. Infrared Technology , 2019, 41(4): 305-310.
    [5]CHEN Zhizhou, CAO Kaiqin, MIAO Bin, CHAI Mengyang, LIU Shufeng, SUN Dexin, LIU Yinnian. Thermal Design of Electric Cabinet for Space Cameras[J]. Infrared Technology , 2017, 39(10): 880-883.
    [6]ZHU Cheng-xi, LI Yang, SHI Jia-ming. Thermal Design of One Infrared Imaging System Based on the Method of TSO Integrated Analysis[J]. Infrared Technology , 2015, (5): 380-386.
    [7]ZHAO Gao-fei, XIE Rong-jian, PEI Yun-tian. Heat Distortion Analysis of A Reflecting Mirror Used in Space Camera[J]. Infrared Technology , 2012, 34(1): 36-40. DOI: 10.3969/j.issn.1001-8891.2012.01.007
    [8]LIU Bi-liu, WANG Wen-wen, SONG Qing-lei, WANG Yong-qiang, XI Bo. Thermal Design Analysis and Application on the Surface Coating Materials of Spacecraft[J]. Infrared Technology , 2011, 33(5): 305-308. DOI: 10.3969/j.issn.1001-8891.2011.05.014
    [9]CAI Shi-ping, SHEN Guo-tu, CAI Ji-guang, DONG Zhan-hai, GAO Jing. Generation of the Finite Element Model and Its Application on Thermal Analysis[J]. Infrared Technology , 2009, 31(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2009.05.009
    [10]Two-Dimensional Thermal Analysis of Multi-Layer Pyroelectric Thin Film Infrared Detector[J]. Infrared Technology , 2004, 26(1): 60-63,66. DOI: 10.3969/j.issn.1001-8891.2004.01.016
  • Cited by

    Periodical cited type(1)

    1. 刘一帆,周峰,胡斌,晋利兵. 全景环带二次成像红外光学系统设计. 航天返回与遥感. 2024(05): 23-30 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return