ZHANG Jie, WANG Guanghua, DENG Feng, YANG Wenyun, GAO Sibo, LU Chaoyu, MENG Zeyang, GAO Shuxiong, CHANG Cheng, CAO Kunyu, MA Saijiang, LIU Yingqi, WANG Liqiong. Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness[J]. Infrared Technology , 2024, 46(10): 1186-1191.
Citation: ZHANG Jie, WANG Guanghua, DENG Feng, YANG Wenyun, GAO Sibo, LU Chaoyu, MENG Zeyang, GAO Shuxiong, CHANG Cheng, CAO Kunyu, MA Saijiang, LIU Yingqi, WANG Liqiong. Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness[J]. Infrared Technology , 2024, 46(10): 1186-1191.

Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness

More Information
  • Received Date: May 26, 2024
  • Revised Date: June 10, 2024
  • Micro-LEDs are a new display technology with advantages including high contrast, fast response, and long lifetimes. Micro-LEDs are currently regarded as an active topic of research. Micro-LED display technology is a promising industry, but its commercialization faces many technical challenges and bottlenecks. This study explores the diode preparation process and related technologies for high-brightness, green-light, GaN-based micro-LED micro-displays. Monochrome green micro-LEDs with resolutions of 800×480 and 0.41 in were fabricated based on the CMOS driver circuit of an all-digital signal circuit. The CMOS driver circuit was connected to an LED chip via high-precision flip bonding. The experimental results showed that the turn-on voltage of the LED was 2.8 V and that the peak wavelength of the electroluminescence spectrum was 524 nm. The maximum brightness of the device can reach 250, 000 cd/m2 within the normal driving range of silicon-based CMOS circuits, and the brightness can reach 108, 000 cd/m2 at 5 V. When the current density was controlled at 0.61 A/cm2, the CIE coordinates were (0.175, 0.756). When the current density was increased from 0.3 A/cm2 to 1.3 A/cm2, the CIE coordinates changed from (0.178, 0.757) to (0.175, 0.746). The color stability of the device met the requirements for practical applications.

  • [1]
    CHEN Z, YAN S, Danesh C. Micro LED technologies and applications: characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 2021, 54(12): 123001. DOI: 10.1088/1361-6463/abcfe4
    [2]
    Wierer Jr J J, Tansu N. Ⅲ‐Nitride micro-LEDs for efficient emissive displays[J]. Laser & Photonics Reviews, 2019, 13(9): 1900141.
    [3]
    Chaji R, Fathi E, Zamani A. Essentials of MicroLED display production[C]//SID Symposium Digest of Technical Papers, 2020, 51(1): 323-327.
    [4]
    Behrman K, Kymissis I. Micro light-emitting diodes[J]. Nature Electronics, 2022, 5(9): 564-573. DOI: 10.1038/s41928-022-00828-5
    [5]
    MIAO W C, Hsiao F H, SHENG Y, et al. Microdisplays: mini-LED, micro-OLED, and micro‐LED[J]. Advanced Optical Materials, 2024, 12(7): 2300112. DOI: 10.1002/adom.202300112
    [6]
    Parbrook P J, Corbett B, Han J, et al. Micro-light emitting diode: from chips to applications[J]. Laser & Photonics Reviews, 2021, 15(5): 2000133.
    [7]
    Lee H E, Shin J H, Park J H, et al. Micro light-emitting diodes for display and flexible biomedical applications[J]. Advanced Functional Materials, 2019, 29(24): 1808075. DOI: 10.1002/adfm.201808075
    [8]
    ZHENG L, Zywietz U, Birr T, et al. UV-LED projection photolithography for high-resolution functional photonic components[J]. Microsystems & Nanoengineering, 2021, 7(1): 64.
    [9]
    LIN J Y, JIANG H X. Development of micro LED[J]. Applied Physics Letters, 2020, 116(10): 100502. DOI: 10.1063/1.5145201
    [10]
    张启宇, 李大航, 李运飞, 等. 中国乘用车前照灯先进技术与发展趋势浅析[J]. 汽车实用技术, 2021, 46(12): 195-196, 199.

    ZHANG Q Y, LI D H, LI Y F, et al. Analysis on the advanced technology and development trend of Chinese passenger car headlamp[J]. Automobile Applied Technology, 2021, 46(12): 195-196, 199.
    [11]
    冯思悦, 梁静秋, 梁中翥, 等. LED微阵列投影系统设计[J]. 中国光学, 2019, 12(1): 88-96.

    FENG S Y, LIANG J Q, LIANG Z Z. et al. Design of projection system for a micro-LED array[J]. Chinese Optics, 2019, 12(1): 88-96.
    [12]
    JIN S X, LI J, LI J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631-633. DOI: 10.1063/1.125841
    [13]
    LIU Z J, CHONG W C, Wog K M, et al. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon(LEDoS) micro-display[J]. Journal of Display Technology, 2013, 9(8): 678-682 DOI: 10.1109/JDT.2013.2256107
    [14]
    Day J, LI J, Lie D Y C, et al. Ⅲ-Nitride full-scale high-resolution micro displays[J]. Applied Physics Letters, 2011, 99(3): 031116 DOI: 10.1063/1.3615679
    [15]
    HUANG Y, TAN G, GOU F, et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387-401. DOI: 10.1002/jsid.760
    [16]
    Virey E H, Baron N, Bouhamri Z. Overlooked challenges for microLED displays[C]//SID Symposium Digest of Technical Papers, 2019, 50(1): 129-132.
    [17]
    LEE V W, Twu N, Kymissis I. Micro-LED technologies and applications[J]. Information Display, 2016, 32(6): 16-23. DOI: 10.1002/j.2637-496X.2016.tb00949.x
    [18]
    Constanze Großmann, Riehemann S, Notni G, et al. OLED-based pico-projection system[J]. Journal of the Society for Information Display, 2010, 18(10): 821-826. DOI: 10.1889/JSID18.10.821
  • Related Articles

    [1]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [2]LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713.
    [3]ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
    [4]HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
    [5]CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403.
    [6]YE Kuntao, LI Wen, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform[J]. Infrared Technology , 2021, 43(12): 1212-1221.
    [7]LI Chuandong, XU Wangming, WU Shiqian. Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images[J]. Infrared Technology , 2021, 43(7): 658-664.
    [8]JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77.
    [9]LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61.
    [10]FAN Ming-zhe, WANG Lu-ping, ZHANG Lu-ping. Regional Detection Algorithm Based on Double Error Reconstruction[J]. Infrared Technology , 2015, 37(11): 962-969.
  • Cited by

    Periodical cited type(3)

    1. 靳铁柱,刘生彦. 改进背景减法下人体运动模糊图像检测仿真. 计算机仿真. 2025(03): 304-308 .
    2. 王封疆,王梦飞,周杰. 基于CHEBWO的多目标棉田图像增强算法. 石河子大学学报(自然科学版). 2024(04): 505-513 .
    3. 张海庆. 不同天气条件下光学图像清晰度实时增强研究. 自动化与仪器仪表. 2024(11): 39-42+47 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return