Citation: | PENG Xiong, ZHONG Xingu, ZHAO Chao, CHEN Anhua, ZHANG Tianyu. Debonding Defect Recognition of Building Decoration Layers by UAV Thermography[J]. Infrared Technology , 2022, 44(2): 189-197. |
[1] |
冯力强, 王欢祥, 晏大伟, 等. 建筑外墙饰面层内部缺陷红外热像法检测试验研究[J]. 土木建筑与环境工程, 2014, 36(2): 57-61 https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201402009.htm
FENG Liqiang, WANG Huanxiang, YAN Dawei, et al. Experimental study on inside defects of building exterior wall decoration layer by infrared thermal imaging method[J]. Journal of Chongqing Jianzhu University, 2014, 36(2): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201402009.htm
|
[2] |
朱红光, 易成, 胡玉琨, 等. 红外热像诊断外墙饰面层粘结缺陷的检测条件研究[J]. 建筑技术, 2016, 47(2): 172-175. DOI: 10.3969/j.issn.1000-4726.2016.02.024
ZHU Hongguang, YI Cheng, HU Yukun, et al. Study on detection conditions for infrared thermography diagnosis of debonding defect of exterior wall decoration layer[J]. Building Technology, 2016, 47(2): 172-175. DOI: 10.3969/j.issn.1000-4726.2016.02.024
|
[3] |
朱雷, 房志明, 王卓琳, 等. 外墙饰面层粘结缺陷的检测评估[J]. 无损检测, 2016, 38(6): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201606004.htm
ZHU Lei, FANG Zhiming, WANG Zhuolin, et al. Detection and evaluation of debonding defect of exterior wall decoration layer[J]. Nondestructive Testing, 2016, 38(6): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201606004.htm
|
[4] |
冯力强, 王欢祥, 晏大玮, 等. 红外热像法检测建筑外墙饰面层内部缺陷试验研究[J]. 土木工程学报, 2014, 47(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201406010.htm
FENG Liqiang, WANG Huanxiang, YAN Dawei, et al. Experimental study on internal defects detection of exterior wall finish coat by infrared thermography[J]. China Civil Engineering Journal, 2014, 47(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201406010.htm
|
[5] |
Gene S, Hojjat A. Infrared thermography for detecting defects in concrete structures[J]. Journal of Civil Engineering and Management, 2018, 24: 508-515. DOI: 10.3846/jcem.2018.6186
|
[6] |
WANG L, ZHANG Z. Automatic detection of wind turbine blade surface cracks based on UAV-taken images[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7293-7303. DOI: 10.1109/TIE.2017.2682037
|
[7] |
CHEN S, Laefer D F, Mangina E, et al. UAV bridge inspection through evaluated 3D reconstructions[J]. Journal of Bridge Engineering, 2019, 24(4): 05019001. DOI: 10.1061/(ASCE)BE.1943-5592.0001343
|
[8] |
CHEN S, Laefer D F, Mangina E. State of technology review of civilian UAVs[J]. Recent Patents on Engineering, 2016, 10(3): 160-174. DOI: 10.2174/1872212110666160712230039
|
[9] |
Rakha T, Gorodetsky A. Review of unmanned aerial system (UAS) applications in the built environment: towards automated building inspection procedures using drones[J]. Automation in Construction, 2018, 93: 252-264. DOI: 10.1016/j.autcon.2018.05.002
|
[10] |
Sattar D, Thomas R J, Marc M. Fatigue Crack Detection using unmanned aerial systems in fracture critical inspection of steel bridges[J]. Journal of Bridge Engineering, 2018, 23(10): 04018078. DOI: 10.1061/(ASCE)BE.1943-5592.0001291
|
[11] |
Tarek O, Nehdi M L. Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography[J]. Automation in Construction, 2017, 83: 360-371. DOI: 10.1016/j.autcon.2017.06.024
|
[12] |
Patel D, Estevam Schmiedt J, Röger M, et al. Approach for external measurements of the heat transfer coefficient (U-value) of building envelope components using UAV based infrared thermography [C]//14th Quantitative Infrared Thermography Conference, 2018: 379-386.
|
[13] |
A Ellenberg, A Kontsos, F Moon, I Bartoli. Bridge deck delamination identification from unmanned aerial vehicle infrared thermography, automation in construction[J]. Automation in Construction, 2016, 72: 155-165 DOI: 10.1016/j.autcon.2016.08.024
|
[14] |
Dusik K, Youn J. Automatic photovoltaic panel area extraction from UAV thermal infrared images[J]. Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography, 2016, 34(6): 559-568. DOI: 10.7848/ksgpc.2016.34.6.559
|
[15] |
勾红叶, 杨彪, 华辉, 等. 桥梁信息化及智能桥梁2019年度研究进展[J]. 土木与环境工程学报, 2020, 42(5): 14-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202005002.htm
GOU Hongye, YANG Biao, HUA Hui, et al. Research progress of bridge informatization and intelligent bridge in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 14-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202005002.htm
|
[16] |
鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5): 5-15.
BAO Yuequan, LI Hui. Artificial intelligence for civil engineering[J]. China Civil Engineering Journal, 2019, 52(5): 5-15.
|
[17] |
Janssens O, Walle R V D, Loccufier M. Deep learning for infrared thermal image based machine health monitoring[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 151-159. DOI: 10.1109/TMECH.2017.2722479
|
[18] |
GONG X, YAO Q, WANG M, et al. A deep learning approach for oriented electrical equipment detection in thermal images[J]. IEEE ACCESS, 2018(6): 41590-41597. http://www.onacademic.com/detail/journal_1000040459031010_dcc9.html
|
[19] |
ZHANG X, LI C, MENG Q, et al. Infrared image super resolution by combining compressive sensing and deep learning[J]. Sensors, 2018, 18(8): 2587. DOI: 10.3390/s18082587
|
[20] |
LUO Q, GAO B, Woo W L, et al. Temporal and spatial deep learning network for infrared thermal defect detection[J]. NDT & E International, 2019, 108: 102164. http://www.sciencedirect.com/science/article/pii/S0963869519301355
|
[21] |
N Saeed, N King, Z Said, et al. Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning[J]. Infrared Physics & Technology, 2019, 102: 03048. http://www.sciencedirect.com/science/article/pii/S1350449519303135
|
[22] |
钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52(4): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201904005.htm
ZHONG Xingu, PENG Xiong, SHEN Mingyan. Study on the feasibility of identifying bridge crack width with images acquired by unmanned aerial vehicles[J]. China Civil Engineering Journal, 2019, 52(4): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201904005.htm
|
[23] |
钟新谷, 彭雄. 基于无人飞机机载成像的混凝土裂缝宽度识别方法: 0845685.9, 中国[P]. 2019-02-19.
ZHONG Xingu, PENG Xiong. Concrete-crack-width identification system and method based on robot bomb airborne imaging: 0845685.9 China, [P]. 2019-02-19
|
[24] |
CHEN L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4): 357-361. http://arxiv.org/pdf/1412.7062
|
[25] |
王晓飞, 胡凡奎, 黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法[J]. 通信学报, 2020, 41(5): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB202005013.htm
WANG Xiaofei, HU Fankui, HUANG Shuo, Infrared image segmentation algorithm based on distribution information intuitionistic fuzzy c-means clustering[J]. Journal on Communications, 2020, 41(5): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB202005013.htm
|
[26] |
李可心, 王钧, 戚大伟. 基于G-S-G的混凝土结构裂缝识别及监测方法[J]. 振动与冲击, 2020, 39(11): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202011013.htm
LI Kexin, WANG Jun, QI Dawei. Research on crack identification and monitoring method of concrete structure based on G-S-G[J]. Journal of Vibration and Shock, 2020, 39(11): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202011013.htm
|
[27] |
王睿, 漆泰岳. 基于机器视觉检测的裂缝特征研究[J]. 土木工程学报, 2016, 49(7): 123-128 https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607012.htm
WANG Rui, QI Taiyue. Study on crack characteristics based on machine vision detection[J]. China Civil Engineering Journal, 2016, 49(7): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201607012.htm
|
[28] |
HWANG Soonkyu, AN Yun Kyu, KIM Ji Min, et al. Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography[J]. Optics and Lasers in Engineering, 2019, 119: 9-17. DOI: 10.1016/j.optlaseng.2019.02.001
|
[29] |
Kang D, Benipal S S, Gopal D L, et al. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning[J]. Automation in Construction, 2020, 118: 103291. DOI: 10.1016/j.autcon.2020.103291
|
[30] |
CHEN L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 40(4): 834-848. http://cseweb.ucsd.edu/classes/sp17/cse252C-a/CSE252C_20170501.pdf
|
[1] | WANG Yefei, CHENG Yanping, YAO Yuan, LI Daojing, YU Xiao. Design of Membrane Diffractive Athermal Infrared Optical System[J]. Infrared Technology , 2021, 43(5): 422-428. |
[2] | LI Shenghui, LI Xin, LI Hongjing. Design of Infrared Dual-Band Common Aperture Thermal Elimination Optical System Based on Harmonic Diffraction[J]. Infrared Technology , 2020, 42(1): 19-24. |
[3] | HE Lei, ZHANG Jianlong, YANG Zhen, GUO Xinmin. Design of a Small Rolling-pitching Long-wave Infrared Optical System[J]. Infrared Technology , 2018, 40(12): 1142-1148. |
[4] | LI Ruiyao, FU Yuegang, LIU Zhiying. Athermalization Design of Compact Medium-wave Infrared Imaging System[J]. Infrared Technology , 2018, 40(2): 119-124. |
[6] | WU Guo-jun, BAI Ting-zhu, BAI Fu-ning. Research on Infrared Images Simulation by Inversing the Scene of the Visible Light Images[J]. Infrared Technology , 2011, 33(10): 574-579. DOI: 10.3969/j.issn.1001-8891.2011.10.004 |
[7] | WU Chun, LIU Xiang-xuan, WU You-peng. Study on the Preparation and Properties of Visible Light and Heat Infrared Camouflage Composite Materials[J]. Infrared Technology , 2009, 31(10): 602-606. DOI: 10.3969/j.issn.1001-8891.2009.10.011 |
[8] | BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007 |
[9] | CHEN Lv-ji, FENG Sheng-rong. A Compact Athermalizing Infrared Optical System[J]. Infrared Technology , 2007, 29(4): 203-205. DOI: 10.3969/j.issn.1001-8891.2007.04.004 |
[10] | MING Jing-qian, JIN Ning, GUO Lan, FENG Sheng-rong. An Athermal Design of Infrared Hybrid Refractive/Diffractive Optical System in 7.5~10.5μm Spectrum[J]. Infrared Technology , 2006, 28(5): 261-265. DOI: 10.3969/j.issn.1001-8891.2006.05.004 |
1. |
周佳乐,宋敏敏,雷昊,刘建旭,曹卫卫,施瑶瑶,董大兴,刘友文. 基于YOLO与图像修复的仿真场景等效构设研究. 激光与红外. 2025(01): 145-154 .
![]() |