DUAN Yu, MAO Jianhong, XIONG Xiong, HU Mingdeng. Cooled Infrared Detector for VOCs Gas Detection[J]. Infrared Technology , 2024, 46(10): 1178-1185.
Citation: DUAN Yu, MAO Jianhong, XIONG Xiong, HU Mingdeng. Cooled Infrared Detector for VOCs Gas Detection[J]. Infrared Technology , 2024, 46(10): 1178-1185.

Cooled Infrared Detector for VOCs Gas Detection

More Information
  • Received Date: January 15, 2023
  • Revised Date: February 02, 2023
  • With the development of infrared technology, cooled infrared detectors are playing an increasingly important role in gas detection. This paper introduces research on infrared gas detectors, domestically and abroad, and expounds on the recent research progress of Zhejiang Juexin Microelectronics Co., Ltd. on VOC gas detectors. The detectors were manufactured using a narrow bandpass filter design, stray radiation suppression, and detector assembly process technology. Moreover, a systematic performance evaluation and analysis of the detector were performed, and the actual imaging was displayed.

  • [1]
    生态环境部. 生态环境部关于印发《重点行业挥发性有机物综合治理方案》的通知[EB/OL]. [2019-6-26][2023-1-15]. https://www.gov.cn/gongbao/content/2019/content_5442284.htm.

    Ministry of Ecology and Environment of People's Republic of China. Comprehensive Management Plan for Volatile Organic Compounds in Key Industries[EB/OL]. [2019-6-26] [2023-1-15]. https://www.gov.cn/gongbao/content/2019/content_5442284.htm.
    [2]
    生态环境部. 挥发性有机物无组织排放控制标准: GB37822-2019[S]. [2019-07-27]. 上海: 华东理工大学.

    Ministry of Ecology and Environment of People's Republic of China. The discharge standard and measurement methods of pollutants from paint manufacturing: GB37822-2019[S]. [2019-07-27]. Shanghai: East China University Of Science And Technology.
    [3]
    刘秀, 王岭雪, 金伟其, 等. 危险气体泄露的光学遥测技术及其进展[J]. 红外技术, 2009, 31(10): 563-567. DOI: 10.3969/j.issn.1001-8891.2009.10.002

    LIU Xiu, WANG Lingxue, JIN Weiqi, et al. The development of optical remote measurement for hazardous gas leakage[J]. Infrared Technology, 2009, 31(10): 563-567. DOI: 10.3969/j.issn.1001-8891.2009.10.002
    [4]
    俞新发, 闫荣鑫, 钟亮, 等. 航天器红外成像检漏方法研究[J]. 航天器环境工程, 2012, 29(2): 220-226. DOI: 10.3969/j.issn.1673-1379.2012.02.021

    YU Xinfa, YAN Rongxin, ZHONG Liang, et al. Research on infrared imaging leak detection method of spacecraft[J]. Spacecraft Environment Engineering, 2012, 29(2): 220-226. DOI: 10.3969/j.issn.1673-1379.2012.02.021
    [5]
    张旭, 金伟其, 李力, 等. 天然气泄露被动式红外成像检测技术及系统性能评价研究进展[J]. 红外与激光工程, 2019, 48(S2): 53-65.

    ZHANG Xu, JIN Weiqi, LI Li, et al. Research progress on passive infrared imaging detection technology and system performance evaluation of natural gas leakage[J]. Infrared and Laser Engineering, 2019, 48(S2): 53-65.
    [6]
    熊仕富. 红外热成像甲烷气体探测与识别系统关键技术研究[D]. 长春: 长春理工大学, 2012.

    XIONG Shifu. Studies on Key Technology of Infrared Thermal Imaging Detection and Identification System for Methane Gas[D]. Changchun: Changchun University of Science and Technology, 2012.
    [7]
    Furry D, Richards A, Lucier R, et al. Detection of volatile organic compounds (VOC′s) with a spectrally filtered cooled mid-wave infrared camera[C]//Infra Mation 2005 Proceedings, 2005: ITC 108A 2005-06-01.
    [8]
    Teledyne Flir. FLIR GFx320-本质安全型防爆红外热像仪[EB/OL]. [2023-01-15]. https://www.flir.cn/discover/instruments/gas-detection/flir-gfx320/.

    Teledyne Flir. FLIR GFx320- Essentially Safe (ES) Infrared Thermal Camera [EB/OL]. [2023-01-15]. https://www.flir.cn/discover/instruments/gas-detection/flir-gfx320/.
    [9]
    Teledyne Flir. FLIR GFx320[EB/OL]. [2023-01-15]. https://www.flir.cn/support/products/gfx320/.
    [10]
    Lynred. SCORPIO BB MW[EB/OL]. [2023-01-15]. https://www.lynred.com/products/scorpio-bb-mw/.
    [11]
    IRnova. T2SL Freja 330[EB/OL]. [2023-01-15]. https://www.irnova.se/products/freja-330/.
    [12]
    Opgal. EYECGAS Multi Methane, Vocs & CO2[EB/OL]. [2023-01-15]. https://www.opgal.com/products/eyecgas/.
    [13]
    唐璟, 罗秀丽, 刘绍华, 等. 石油和天然气红外成像检漏[J]. 激光与红外, 2016, 46(1): 62-66.

    TANG Jing, LUO Xiuli, LIU Shaohua, et al. Infrared imaging detection of oil and natural gas leakage[J]. Laser & Infrared, 2016, 46(1): 62-66.
    [14]
    HITRAN. Absorption cross section search[EB/OL]. [2023-01-15]. https://hitran.org/data-index/.
    [15]
    田亚, 张磊, 林国画, 等. 红外带通滤光片77 K光谱漂移特性实验研究[J]. 红外, 2020, 41(5): 19-23.

    TIAN Ya, ZHANG Lei, LIN Guohua, et al. Experiment research on spectrum drift characteristic at 77 K of infrared band-pass filters[J]. Infrared, 2020, 41(5): 19-23.
    [16]
    付志凯, 魏威, 张磊, 等. 不同冷屏黑化工艺对红外探测器性能的影响[J]. 红外, 2019, 40(11): 17-22.

    FU Zhikai, WEI Wei, ZHANG Lei, et al. Influences of different blackening process of cold shield on the performance of infrared detectors[J]. Infrared, 2019, 40(11): 17-22.
    [17]
    尹爽, 徐世春, 高玲, 等. 冷屏结构与冷屏效率[J]. 红外与激光工程, 2021, 50(3): 20200223.

    YIN Shuang, XU Shichun, GAO Ling, et al. Structure and efficiency of cold shield[J]. Infrared and Laser Engineering, 2021, 50(3): 20200223.
    [18]
    Robert P B, Problems and techniques in stray radiation suppression[J]. SPIE, 1977, 107: 2-23.
    [19]
    ZHANG Yan, LIU Dafu, HE Xiangrong, et al. Stray light in infrared detector[C] Pro. of SPIE, 2009, 7383: 331-339.
    [20]
    汪洋. 红外探测器组件杂散光分析及抑制研究[D]. 北京: 中国科学院大学, 2016.

    WANG Yang. Study on suppression and analysis of stray light in infrared detector assembly[D]. Beijing: University of Chinese Academy of Science, 2016.
    [21]
    熊雄, 段煜, 胡明灯, 等. 640×512小型化红外探测器杜瓦组件可靠性研究[J]. 红外技术, 2022, 44(1): 89-95. http://hwjs.nvir.cn/article/id/0320e799-acda-455d-ad0b-301d224308d0

    XIONG Xiong, DUAN Yu, HU Mingdeng, et al. Reliability research for 640×512 miniaturized IR detector dewar assembly[J]. Infrared Technology, 2022, 44(1): 89-95. http://hwjs.nvir.cn/article/id/0320e799-acda-455d-ad0b-301d224308d0
    [22]
    Philippe C. Sofradir MCT technology for space applications[C]//Pro. of SPIE, 2009, 7330: 1-12.
    [23]
    叶振华, 李辉豪, 王进东, 等. 红外光电探测器的前沿热点与变革[J]. 红外与毫米波学报, 2022, 41(1): 15-39.

    YE Zhenhua, LI Huihao, WANG Jindong, et al. Recent hotspots and innovative trends of infrared photon detectors[J]. J. Infrared Millim. Waves, 2022, 41(1): 15-39
  • Related Articles

    [1]ZHANG Xuesong, WU Nan, WANG Feng, CHU Sisi, LI Dongze. Analysis of Detection Ability of Missile-Borne Infrared Detector to Interceptor[J]. Infrared Technology , 2024, 46(5): 599-607.
    [2]LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.
    [3]DENG Wei, SUN Hongsheng, ZHU Yingfeng, XU Dongmei, LI Ran, HUANG Yibin. Development Status of the Flexible Thermal Link Coupling Between Cryocooler and Long Linear Infrared Detector[J]. Infrared Technology , 2020, 42(1): 10-18.
    [4]CHI Guochun, SUN Hao, WANG Liang, LIU Xiangde, RAO Qichao. The Analysis of Cooling Parameters of Infrared Detector Assembly[J]. Infrared Technology , 2019, 41(7): 683-688.
    [5]FENG Hongwei, LIU Yuanyuan, XIE Linbo. Algorithm Design and Implementation for Dual-band Infrared Combustible Gas Detector[J]. Infrared Technology , 2019, 41(3): 227-231.
    [6]YANG Xiaole, SHI Manli, LING Long. Design of the Key Driving and Signal Processing Circuit for Cooled Infrared Detector[J]. Infrared Technology , 2016, 38(7): 556-560.
    [7]LI Jia-kun, JIN Wei-qi, WANG Xia, JIN Ming-lei, DUN Xiong, CHEN Ji. Review of Gas Leak Infrared Imaging Detection Technology[J]. Infrared Technology , 2014, (7): 513-520.
    [8]CHU Jun-hao, MENG Xian-jian. A Ferroelectric Polymer of Polyvinylidene Fluoride for the Application of Infrared Detection[J]. Infrared Technology , 2014, (1): 1-9.
    [9]Fundamentals of p-on-n HgCdTe Infrared Detectors and Their Detectivity Calculations[J]. Infrared Technology , 2013, (5): 249-258.
    [10]Relatively Spectrum Response Detection of Infrared Detector in 1~3μm[J]. Infrared Technology , 2004, 26(2): 64-67. DOI: 10.3969/j.issn.1001-8891.2004.02.017

Catalog

    Article views (104) PDF downloads (72) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return