XIONG Xianming, ZHANG Qiankun, QIN Zujun. Research on Highway State Detection Based on Visible-Near-Infrared Spectrum[J]. Infrared Technology , 2021, 43(2): 131-137.
Citation: XIONG Xianming, ZHANG Qiankun, QIN Zujun. Research on Highway State Detection Based on Visible-Near-Infrared Spectrum[J]. Infrared Technology , 2021, 43(2): 131-137.

Research on Highway State Detection Based on Visible-Near-Infrared Spectrum

More Information
  • Received Date: July 18, 2019
  • Revised Date: October 07, 2019
  • Spectral technology is a promising prospect for highway state detection(whether frozen, water accumulated, or snow accumulated). However, there is little research on using sunlight as a light source to identify highway states. Sunlight and halogen tungsten lamps were used as experimental light sources in the day and night. Spectral curves of the visible-near-infrared bands of ice, water, snow, and highway backgrounds were obtained using a micro-spectrometer. During the day, the state of icing and stagnant water resulted in a phenomenon known as "Different substances with similar spectra" under different illumination conditions. Then, based on the characteristics of sunlight illumination, the solution of "environmental variables" as eigen values was proposed. The curve of the spectrum and the normalized "environmental variables" were combined into a new data waveform, and a neural network model based on Dropout and an Adam optimizer was established for training and recognition. The final recognition rate was 99.375%. At night, due to the evident differences in the spectra of various samples, the spectral curves of each sample were identified using the "combination-threshold" method. Experiments proved that the method of combining two light sources can effectively identify the road surface state.
  • [1]
    欧彦, 浦翔, 周旭驰, 等. 路面结冰检测技术研究进展[J]. 公路, 2013(4): 191-195.

    OU Yan, PU Xiang, ZHOU Xunchi, et al. Review on icing detection techniques of pavement[J]. High Way, 2013(4): 191-195.
    [2]
    童魁. 路面冰水检测系统技术研究[D]. 南京: 东南大学, 2011.

    TONG Kui. Research On System Technology of Road Ice And Water Detection[D]. Nanjing: Southeast University, 2011.
    [3]
    张镇, 葛俊锋, 叶林, 等. 基于神经网络的主动式红外结冰探测[J]. 华中科技大学学报: 自然科学版, 2010, 38(6): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201006002.htm

    ZHANG Zhen, GE Junfeng, YE Lin, et al. Active infrared icing detection using neural networks[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2010, 38(6): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201006002.htm
    [4]
    Colace L, Santoni F, Assanto G. A near-infrared optoelectronic approach to detection of road conditions[J]. Optics and Lasers in Engineering, 2013, 51(5): 633-636. DOI: 10.1016/j.optlaseng.2013.01.003
    [5]
    梁曹佳, 叶林, 葛俊锋. 非接触式路面状态检测技术研究进展[J]. 传感器与微系统, 2019, 38(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201902001.htm

    LIANG Caojia, YE Lin, GE Junfeng. Research progress of non-contact road surface condition detection technology[J]. Transducer and Microsystem Technologies, 2019, 38(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201902001.htm
    [6]
    Johan Casselgren, Mikael Sjodahl, James LeBlanc. Angular spectral response from covered asphalt[J]. Applied Optics, 2007, 46(20): 4277-4288. DOI: 10.1364/AO.46.004277
    [7]
    王琮琪. 非接触式路面状况检测系统的研究[D]. 杭州: 浙江大学, 2014.

    WANG Zongqi. No-contact Measuring System of the Condition of Road[D]. Hangzhou: Zhejiang University, 2014.
    [8]
    高斌, 赵鹏飞, 卢昱欣, 等. 基于BP神经网络的血液荧光光谱识别分类研究[J]. 光谱学与光谱分析, 2018, 38(4): 3136-3143. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201810029.htm

    GAO Bin, ZHAO Pengfei, LU Yuxin, et al. Study on recognition and classification of blood fluorescence spectrum with BP neural network[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 3136-3143. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201810029.htm
    [9]
    刘厚林, 吴贤芳, 王勇, 等. 基于BP神经网络的离心泵关死点功率预测[J]. 农业工程学报, 2012(11): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201211009.htm

    LIU Houlin, WU Xianfang, WANG Yong, et al. Power prediction for centrifugal pumps at shut off condition based on BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012(11): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201211009.htm
    [10]
    王威, 李青, 孙叶青, 等. 基于卷积神经网络的红外热成像罐车内壁裂纹识别[J]. 红外技术, 2018, 40(12): 1198-1205. http://hwjs.nvir.cn/article/id/hwjs201812014

    WANG Wei, LI Qing, SUN Yeqing, et al. Inner crack identification on car tanks using thermal imaging based on convolutional neural network[J]. Infrared Technology, 2018, 40(12): 1198-1205. http://hwjs.nvir.cn/article/id/hwjs201812014
    [11]
    杨观赐, 杨静, 李少波, 等. 基于Dropout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报: 自然科学版, 2018, 46(7): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201807023.htm

    YANG Guanci, YANG Jing, LI Shaobo, et al. Modified CNN algorithm based on dropout and ADAM optimizer[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2018, 46(7): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201807023.htm
  • Related Articles

    [1]GONG Jiamin, ZHANG Lei, LIU Shanghui, JIANG Jiewei, JIN Ku. Image Fusion Based on Simplified Two-Dimensional Kaniadakis Entropy Segmentation Algorithm and Fast Guided Filtering[J]. Infrared Technology , 2025, 47(2): 201-210.
    [2]JIANG Jiewei, LIU Shanghui, JIN Ku, LIU Haiyang, WEI Xumeng, GONG Jiamin. Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering[J]. Infrared Technology , 2023, 45(3): 249-256.
    [3]HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
    [4]CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403.
    [5]CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088.
    [6]HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915.
    [7]GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan. Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J]. Infrared Technology , 2018, 40(12): 1161-1169.
    [8]GAN Ling, ZHANG Qianwen. Image Fusion Method Combining Non-subsampled Contourlet Transform and Guide Filtering[J]. Infrared Technology , 2018, 40(5): 444-448,454.
    [9]GE Peng, YANG Bo, MAO Wenbiao, CHEN Shaolin, ZHANG Qiaoyan, HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology , 2017, 39(12): 1092-1097.
    [10]LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927.
  • Cited by

    Periodical cited type(8)

    1. 朱亚辉. NSCT框架下动静态联合滤波的红外与可见光图像融合方法. 电脑知识与技术. 2024(08): 1-4 .
    2. 张剑,高云,何栋. 基于离散2-D小波多级分解的电容器外观缺陷视觉检测方法. 电子器件. 2024(05): 1255-1260 .
    3. 陈超洋,姜媛媛. 基于深度图像分解的红外与可见光图像融合. 红外技术. 2024(12): 1362-1370 . 本站查看
    4. 李晨,侯进,李金彪,陈子锐. 基于注意力与残差级联的红外与可见光图像融合方法. 计算机工程. 2022(07): 234-240 .
    5. 李文,叶坤涛,舒蕾蕾,李晟. 基于高斯模糊逻辑和ADCSCM的红外与可见光图像融合算法. 红外技术. 2022(07): 693-701 . 本站查看
    6. 李永萍,杨艳春,党建武,王阳萍. 基于变换域VGGNet19的红外与可见光图像融合. 红外技术. 2022(12): 1293-1300 . 本站查看
    7. 孙学蕾,高宏伟. 改进小波变换的红外与可见光融合方法研究. 沈阳理工大学学报. 2021(03): 19-23+28 .
    8. 赵汝海,汪方斌. 基于灰度和信息熵融合的金属疲劳偏振热像分割算法. 激光与光电子学进展. 2021(24): 260-271 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return