WANG Mingxing, ZHENG Fu, WANG Yanqiu, SUN Zhibin. Time-of-Flight Point Cloud Denoising Method Based on Confidence Level[J]. Infrared Technology , 2022, 44(5): 513-520.
Citation: WANG Mingxing, ZHENG Fu, WANG Yanqiu, SUN Zhibin. Time-of-Flight Point Cloud Denoising Method Based on Confidence Level[J]. Infrared Technology , 2022, 44(5): 513-520.

Time-of-Flight Point Cloud Denoising Method Based on Confidence Level

More Information
  • Received Date: October 07, 2021
  • Revised Date: November 10, 2021
  • The time-of-flight (ToF) 3D imaging method suffers from reduced precision in the depth measurement of target objects because of multipath interference and mixed pixels. Traditional methods improve the accuracy of the measurement by optimizing and reconstructing abnormal point cloud data or filtering noisy point cloud data. However, these methods are complex and can easily lead to excessive smoothing. The relationship between a valid point cloud and noisy point cloud in a 3D point cloud image is difficult to express using a mathematical model. To address these problems, a point cloud denoising method based on the confidence level is proposed in this paper. First, the probability correlation of multi-frame point cloud data is analyzed, and the confidence level of the point cloud data is used as the basis to distinguish valid point clouds from noisy point clouds. Second, by utilizing the vector duality between multi-frame point clouds, a fast algorithm for extracting point clouds with different confidence levels is presented, and its time complexity is O(L). Finally, the algorithm is used to extract the point cloud data with a high confidence level in multi-frame 3D images to obtain the real measurement data of the target object. We focus on the comparative experiments of four groups of point cloud data in different scenes. The experimental results show that the algorithm can not only effectively filter the noise but also significantly improve the distance measurement accuracy of the target object and enhance the characteristics of the target object; therefore, it has extensive application value.
  • [1]
    LI L. Time-of-flight camera–an introduction[R/OL]. [2021-10-08]. chrome-extension: //ibllepbpahcoppkjjllbabhnigcbffpihttp://www-cs.ccny.cuny.edu/~wolberg/capstone/kinect/ToFBasicsTI14.pdf.
    [2]
    Foix S, Alenya G, Torras C. Lock-in time-of-flight (ToF) cameras: A survey[J]. IEEE Sensors Journal, 2011, 11(9): 1917-1926. DOI: 10.1109/JSEN.2010.2101060
    [3]
    Whyte R, Streeter L, Cree M J, et al. Review of methods for resolving multi-path interference in time-of-flight range cameras[C]//Sensors, IEEE, 2014: 629-632.
    [4]
    ZENG J, CHEUNG G, Ng M, et al. 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model[J]. IEEE Transactions on Image Processing, 2019, 29: 3474-3489.
    [5]
    Fleishman S, Cohen-Or D, Silva C T. Robust moving least-squares fitting with sharp features[J]. ACM transactions on graphics (TOG), 2005, 24(3): 544-552. DOI: 10.1145/1073204.1073227
    [6]
    Guennebaud G, Germann M, Gross M. Dynamic sampling and rendering of algebraic point set surfaces[C]//Computer Graphics Forum, 2008, 27(2): 653-662.
    [7]
    Öztireli A C, Guennebaud G, Gross M. Feature preserving point set surfaces based on non-linear kernel regression[C]//Computer Graphics Forum, 2009, 28(2): 493-501.
    [8]
    SUN Y, Schaefer S, WANG W. Denoising point sets via L0 minimization[J]. Computer Aided Geometric Design, 2015, 35: 2-15.
    [9]
    Lipman Y, Cohen-Or D, Levin D, et al. Parameterization-free projection for geometry reconstruction[J]. ACM Transactions on Graphics (TOG), 2007, 26(3): 22-es. DOI: 10.1145/1276377.1276405
    [10]
    HUANG H, LI D, ZHANG H, et al. Consolidation of unorganized point clouds for surface reconstruction[J]. ACM Transactions on Graphics (TOG), 2009, 28(5): 1-7.
    [11]
    HUANG H, WU S, GONG M, et al. Edge-aware point set resampling[J]. ACM Transactions on Graphics (TOG), 2013, 32(1): 1-12.
    [12]
    Avron H, Sharf A, Greif C, et al. ℓ1-sparse reconstruction of sharp point set surfaces[J]. ACM Transactions on Graphics (TOG), 2010, 29(5): 1-12.
    [13]
    Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, 2: 60-65.
    [14]
    Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. DOI: 10.1109/TIP.2007.901238
    [15]
    WANG R, CHEN W, ZHANG S, et al. Similarity-based denoising of point-sampled surfaces[J]. Journal of Zhejiang University-Science A, 2008, 9(6): 807-815. DOI: 10.1631/jzus.A071465
    [16]
    HE Y, CHEN S. Recent advances in 3D data acquisition and processing by time-of-flight camera[J]. IEEE Access, 2019, 7: 12495-12510. DOI: 10.1109/ACCESS.2019.2891693
    [17]
    Reynolds M, Doboš J, Peel L, et al. Capturing time-of-flight data with confidence[C]//CVPR, IEEE, 2011: 945-952.

Catalog

    Article views (453) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return