LI Peihua, ZHANG Sheng, LIU Yuli, QIAN Mingsi. CSS-SIFT Composite Image Registration Algorithm[J]. Infrared Technology , 2021, 43(1): 26-36.
Citation: LI Peihua, ZHANG Sheng, LIU Yuli, QIAN Mingsi. CSS-SIFT Composite Image Registration Algorithm[J]. Infrared Technology , 2021, 43(1): 26-36.

CSS-SIFT Composite Image Registration Algorithm

More Information
  • Received Date: March 14, 2020
  • Revised Date: December 26, 2020
  • To address the time-consuming problem of image registration in the scale-invariant feature transform(SIFT) algorithm, a curvature scale space (CSS)-SIFT composite image registration algorithm is proposed in this paper. First, the CSS-SIFT algorithm uses the CSS algorithm to extract image features. Image feature descriptors are then generated and reduced by the optimized SIFT algorithm. Finally, an optimized two-way matching algorithm based on Euclidean and Manhattan distances is used for matching.A simulation experiment is conducted using simulation software, and six parameters of index data are employed, including the number of image features, number of matches, number of correct matches, registration accuracy, registration time, and registration time decline rate. Statistical results show that the CSS-SIFT algorithm performs as well as the following algorithms in terms of accuracy of image registration: traditional SIFT, traditional speeded-up robust features, Forstern-SIFT, Harris-SIFT, and Trajkovic-SIFT. In addition, time-consumption of image registration is reduced by 58.45%, 10.68%, 14.84%, 16.21%, and 4.63%, respectively, thus providing an effective solution for image registration.
  • [1]
    谢金哲.增强现实中的图像配准方法研究[D].长沙: 国防科学技术大学, 2014.

    XIE Jinzhe. Research on Image Registration Methods for Augmented Reality[D]. Changsha: National University of Defense Technology, 2014.
    [2]
    徐鹏.双目视觉的图像配准与拼接及其应用[D].重庆: 重庆邮电大学, 2019.

    XU Peng. Image Registration And Stitching of Binocular Vision and Its Application[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2019.
    [3]
    章盛.图像拼接算法的优化及漫游系统的研究[D].芜湖: 安徽工程大学, 2016.

    ZHANG Sheng. Optimization of Image Stitching Algorithm and Research of Roaming System[D]. Wuhu: Anhui Polytechnic University, 2016.
    [4]
    Lowe D G. Object recognition from local scale-invariant features[C]// Proceedings of the International Conference on Computer Vision, 1999: 1150-1157.
    [5]
    Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91- 110. DOI: 10.1023/B:VISI.0000029664.99615.94
    [6]
    Jolliffe I T. Principal Component Analysis[M]. New York: Springer- Verlag New York Inc, 2002.
    [7]
    Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004: 511-517.
    [8]
    Bay H, Tuytelaars T, Gool L V. SURF: Speeded up robust features[C]// Proceedings of the European Conference on Computer Vision, 2006: 404-417.
    [9]
    刘芳, 武桥, 杨淑媛, 等.结构化压缩感知研究进展[J]. 自动化学报, 2013, 39(12): 1980- 1995.

    LIU Fang, WU Qiao, YANG Shuyuan, et al. Research advances on structured compressive sensing[J]. Acta Automatica Sinica, 2013, 39(12): 1980-1995.
    [10]
    杨飒, 杨春玲.基于压缩感知与尺度不变特征变换的图像配准算法[J]. 光学学报, 2014, 34(11): 1110001-1-1110001-5.

    YANG Sa, YANG Chunling. Image registration algorithm based on sparse random projection and scale-invariant feature transform[J]. Acta Optica Sinica, 2014, 34(11): 1110001s-1-1110001-5.
    [11]
    赵爱罡, 王宏利, 杨小冈, 等.融合几何特征的压缩感知SIFT描述子[J]. 红外与激光过程, 2015, 44(3): 1085-1091.

    ZHAO Aigang, WANG Hongli, YANG Xiaogang, et al. Compressed sense SIFT descriptor mixed with geometrical feature[J]. Infrared and Laser Engineering, 2015, 44(3): 1085-1091.
    [12]
    Trajkovic M, Hedley M. Fast corner detection[C]//Image and Vision Computing, 1988: 75-87.
    [13]
    韩超, 方露, 章盛.一种优化的图像配准算法[J]. 电子测量与仪器仪表, 2017, 31(2): 178-184.

    HAN Chao, FANG Lu, ZHANG Sheng. An optimized image registration algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(2): 178-184.
    [14]
    Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. DOI: 10.1145/358669.358692
    [15]
    胡为, 刘兴雨.基于改进SIFT算法的单目SLAM图像匹配方法[J]. 电光与控制, 2019, 26(5): 7-13.

    HU Wei, LIU Xingyu. A Monocular SLAM Image Matching Method Based on Improved SIFT Algorithm[J]. Electronics Optics & Control, 2019, 26(5): 7-13.
    [16]
    Fjortoft R, Lopes A, Marthon P, et al. An optimal multiedge detectors for SAR Image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 793-802. DOI: 10.1109/36.673672
    [17]
    OTSU N. A threshold selection method from gray level histograms[J]. IEEE Transactions on SMC, 1979, 9(1): 62-69.
    [18]
    迟英鹏, 刘畅.一种适用于SAR图像配准的改进SIFT算法[J]. 中国科学院大学学报, 2019, 36(2): 259-266.

    CHI Yingpeng, LIU Chang. An improved SIFT algorithm for SAR image registration[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2): 259-266.
    [19]
    陆宗骐, 梁诚.用Sobel算子细化边缘[J]. 中国图象图形学报, 2000, 5(6): 516-520. DOI: 10.3969/j.issn.1006-8961.2000.06.015

    LU Zongqi, LIANG Cheng. Edge thinning based on Sobel Operator[J]. Journal of Image and Graphics, 2000, 5(6): 516-520. DOI: 10.3969/j.issn.1006-8961.2000.06.015
    [20]
    程德强, 李腾腾, 郭昕, 等.改进的SIFT领域投票图像匹配算法[J]. 计算机工程与设计, 2020, 41(1): 162-168.

    CHENG Deqiang, LI Tenten, GUO Xin, et al. Improved SIFT voting image matching algorithm[J]. Computer Engineering and Design, 2020, 41(1): 162-168.
    [21]
    Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381. DOI: 10.1109/34.735812
    [22]
    Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
  • Related Articles

    [1]CHENG Hongchang, SHI Feng, YAN Lei, REN Bin, BAI Xiaofeng. Research on the Relationship Between Solar-blindness Property of UV Detector and Spectral Response Curve of AlGaN Photocathode[J]. Infrared Technology , 2019, 41(12): 1156-1160.
    [2]NIU Sen, GAO Xiang, LIU Lu, YUAN Yuan, GUO Xin, CHEN Chang, YANG Shuning. Influence of Cs, O Activation on Spectral Response Characteristics of GaAsP Photocathode[J]. Infrared Technology , 2018, 40(2): 189-192.
    [3]JI Yulong, MAO Jingxiang, LI Wenxia, YANG Pengwei, HUANG Junbo, SHU Chang, LI Hongfu, XIE Gang. Research on Spectral Response Test System of Digitalization Infrared Detector[J]. Infrared Technology , 2017, 39(10): 897-902.
    [4]LI Xiao-feng, JIANG Yun-long, LI Jing-wen, JI Ming, LI Jin-sha, ZHANG Qin-dong. Study on Spectral Response beyond Cut off of Cs2Te Ultra Violet Photo Cathode[J]. Infrared Technology , 2015, (12): 1068-1073.
    [5]LI Xiao-feng, ZHAO Xue-feng, CHEN Qi-jun, CHU Zhu-jun, HUANG Jian-min. Study of K2Te Solar Blind Ultraviolet Photocathode[J]. Infrared Technology , 2014, (12): 967-972.
    [6]CHENG You-du, LI Li-hua, JI Yu-long, HONG Jian-tang, DAI Nuo, JIANG Wei-bo, YANG Deng-quan, ZHAO Wei-wei. Some Problems for Measurement of the IR Detector’s Relative Spectral Response Curve by IR Fourier Spectroscopy[J]. Infrared Technology , 2013, (12): 813-817.
    [7]LI Xiao-feng, SHI Feng, FENG Liu. Study on Fluorescence of Transparent GaAs Cathode[J]. Infrared Technology , 2013, (6): 319-324.
    [8]Study on Variation of Work Function and Electron Transition of Multi Alkali Cathode during Cs Activation and Cs-Sb Activation[J]. Infrared Technology , 2013, (4): 202-206.
    [9]GAO Pin, ZHANG Yi-jun. Comparison of Spectral Characteristics on Different Reflection-Mode GaAs Photocathodes[J]. Infrared Technology , 2011, 33(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2011.07.012
    [10]DU Yu-jie, DU Xiao-qing, CHANG Ben-kang. Compare and Analysis of Spectral Response Characteristics of Foreign GaAs Photocathodes[J]. Infrared Technology , 2005, 27(3): 254-256. DOI: 10.3969/j.issn.1001-8891.2005.03.017
  • Cited by

    Periodical cited type(12)

    1. 谢国波,何宇钦,林志毅,唐晶晶,文刚. 融合Swin Transformer与UNet的云检测架构. 遥感信息. 2023(03): 1-8 .
    2. 刘燕,张力,王庆栋,王春青,韩晓霞. 国产高分辨率卫星影像云检测. 遥感信息. 2022(01): 134-142 .
    3. 张利斌,石文轩,孙世磊,高旭东. 多层级特征融合U-Net的遥感图像云检测. 信息系统工程. 2022(02): 8-12 .
    4. 朱博,钟方洁,赵军锁. 基于分形维数和角二阶矩辅助的卷积神经网络云雪识别研究. 遥感技术与应用. 2022(06): 1328-1338 .
    5. 谢涛,任佳昊,王超. IGBP云检测网格产品升尺度方法及精度评价. 遥感信息. 2022(06): 8-14 .
    6. 孙阳,郑新杰. 一种基于RGB彩色遥感影像的云检测方法. 测绘与空间地理信息. 2021(S1): 9-11+15 .
    7. 李应芸,徐忠彪,严佩升,杨冬琴. 基于主成分分离方法的航空图像云检测. 测绘与空间地理信息. 2021(10): 89-93 .
    8. 李妹燕. 基于深度学习网络的红外遥感图像多目标检测. 激光杂志. 2021(11): 107-111 .
    9. 赵静,龙腾,兰玉彬,龙拥兵,李继宇. 多旋翼无人机近地遥感光谱成像装置研制. 农业工程学报. 2020(03): 78-85 .
    10. 曾凡毅. 基于深度学习的嵌入式云检测系统的设计与实现. 工业控制计算机. 2020(05): 131-132+135 .
    11. 刘青芳. 用于分割MRI图像中异常信号区的全卷积网络模型训练方法研究. 电子元器件与信息技术. 2019(09): 77-79 .
    12. 刘军,郑群峰,邢秀为,陈训来,陈潜,钱静. 风云气象卫星影像自动精细云检测. 测绘通报. 2019(12): 45-49 .

    Other cited types(8)

Catalog

    Article views (323) PDF downloads (44) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return