ZHAO Xingying, HUANG Wei, CHEN Jun, LUO Yun, YE Wenfan, SUN Hao, BI Xiang, LI Xiaojun. Research Progress of Pulse Tube With Acoustic Power Recovery[J]. Infrared Technology , 2025, 47(5): 539-546.
Citation: ZHAO Xingying, HUANG Wei, CHEN Jun, LUO Yun, YE Wenfan, SUN Hao, BI Xiang, LI Xiaojun. Research Progress of Pulse Tube With Acoustic Power Recovery[J]. Infrared Technology , 2025, 47(5): 539-546.

Research Progress of Pulse Tube With Acoustic Power Recovery

More Information
  • Received Date: March 28, 2023
  • Revised Date: September 19, 2023
  • Available Online: May 27, 2025
  • Owing to its advantages of low vibration, long lifespan, and high reliability, the pulse tube refrigerator has demonstrated significant potential in applications such as high-temperature superconducting systems and satellite-borne infrared devices. As a result, it has become one of the prominent research areas in recent years. However, the inherent refrigeration efficiency of a pulse tube refrigerator using traditional phase modulation methods is generally lower than that of a Stirling refrigerator. This is primarily because the acoustic power at the hot end is dissipated as heat. Recovering this acoustic power can enhance refrigeration efficiency and reduce overall system weight, which is especially beneficial for refrigerators with high cooling capacities operating in high-temperature environments. This paper reviews the current state of research on acoustic power recovery methods for pulse tube refrigerators, both domestically and internationally, and explores their application prospects and development trends. Finally, a pulse tube refrigerator incorporating acoustic power recovery suitable for use in a KIP unit is presented.

  • [1]
    Gifford W E, Longsworth R C. Pulse tube refrigeration[J]. Journal of Engineering for Industry, 1964, 86: 264-268. DOI: 10.1115/1.3670530
    [2]
    Gifford W E, Longsworth R C. Pulse tube refrigeration progress[J]. Advances in Cryogenic Engineering, 1964, 10(B): 69-79.
    [3]
    Gifford W E, Kyanka G H. Reversible pulse tube refrigeration[J]. Advances in Cryogenic Engineering, 1966, 12: 619-630.
    [4]
    吴镁. 声功回收级联型脉管制冷机研究[D]. 杭州: 浙江大学, 2015.

    WU Mei. Study on a Cascade Pulse Tube Cryocooler with Work Recovery[D]. Hangzhou: Zhejiang University, 2015.
    [5]
    王龙一, 刘东立, 王博, 等. 基于脉管内调相的声功回收型脉管制冷机[P]. 中国: 201210587580. X, 2013.

    WANG Longyi, LIU Dongli, WANG Bo, et al. A Acoustic Power Recovery Pulse Tube Refrigerator Based on the Phase Modulation in the Tube Interior[P]. China: 201210587580. X, 2013.
    [6]
    朱佳凯, 宋豫京, 王龙一, 等. 一种声功回收型级联脉管制冷机[C]// 第十一届全国低温工程大会论文集, 2013: 342-347.

    ZHU Jiakai, SONG Yujing, WANG Longyi, et al. A cascade pulse tube with work recovery[C]//Proceedings of the 11th National Cryogenic Engineering Conference, 2013: 342-347.
    [7]
    姜晓. 斯特林型脉管制冷机声功匹配机理与实验研究[D]. 杭州: 浙江大学, 2017.

    JIANG Xiao. Study on Acoustic Power Match in a Stirling Pulse Tube Cryocooler[D]. Hangzhou: Zhejiang university, 2017.
    [8]
    王龙一. 脉管制冷声-力-电匹配及其逼近卡诺效率的方法[D]. 杭州: 浙江大学, 2016.

    WANG Longyi. A Coustic-Mechanical-Electrical Coupling and an Approach to Carnot Efficiency of Pulse Tube Refrigeration[D]. Hangzhou: Zhejiang University, 2016.
    [9]
    Matsubara Y, Miyake A. A Iternative methods of the orifice pulse tube refrigerator[C]//International Cryocooler Conference 05, 1988: 127-135.
    [10]
    Matsubara Y. Classification of pulse tube cryocoolers[C]//International Cryogenic Engineering Conferenc, 1988: 11-16.
    [11]
    Ishizaki Y, Ishizaki E. Experimental performance of modified pulse tube refrigerator below 80 K down to 23 K[C]//Proceedings of 7th International Cryocooler Conference, 1992: 140-145.
    [12]
    ZHU S, NOGAWA M. Pulse tube stirling machine with warm gas-driven displacer[J]. Cryogenics, 2010, 50(5): 320-330. DOI: 10.1016/j.cryogenics.2010.01.011
    [13]
    胡剑英, 罗二仓, 吴张华, 等. 多缸脉冲管制冷机的调相机理研究[J]. 工程热物理学报, 2013, 34(2): 229-232.

    HU Jianying, LUO Ercang, WU Zhanghua, et al. Research on phase modulation mechanisms in multi-cylinder pulse tube cryocoolers[J]. Journal of Engineering Thermophysics, 2013, 34(2): 229-232.
    [14]
    HU J Y, LUO E C, ZHANG L M, et al. A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids[J]. Applied Energy, 2013, 112: 1166-1170. DOI: 10.1016/j.apenergy.2013.01.070
    [15]
    ZHU S. Step piston pulse tube refrigerator[J]. Cryogenics, 2014, 64: 63-69. DOI: 10.1016/j.cryogenics.2014.09.006
    [16]
    LIN Y Z, ZHU S W. Numerical investigation of the new phase shifter for pulse tube refrigerator-inertancetube combining with step-piston[J]. International Journal of Refrigeration, 2019, 97: 42-48. DOI: 10.1016/j.ijrefrig.2018.09.016
    [17]
    DENG Weifeng, LIU Shaoshuai, CHEN Xi, et al. A work-recovery pulse tube refrigerator for natural gas liquefaction[J]. Cryogenics, 2020, 111: 1-8.
    [18]
    陈曦, 缪源, 杨易坤, 等. 一种电磁阀以及一拖二功回收型脉管制冷机[P]. 中国: CN 108869774 A, 2018-11-23.

    CHEN Xi, MIU Yuan, YANG Yikun, et al. An electromagnetic valve and a dual-piston active-buffer pulse tube cryocooler with work recovery[P]. China: CN 108869774 A, 2018-11-23.
    [19]
    蒋珍华, 吴亦农, 黄政, 等. 一种柱弹簧支撑的主动活塞调相功回收一体式脉管制冷机[P]. 中国: CN 115289713 A, 2022-07-11.

    JIANG Zhenhua, WU Yilong, HUANG Zheng, et al. An integrated linear spring supported active-piston phase shifting and work recovery pulse tube cryocooler[P]. China: CN 115289713 A, 2022-07-11.
    [20]
    KI T, JEONG S. Design and analysis of compact work-recovery phase shifter for pulse tube refrigerator[J]. Cryogenics, 2012, 52(2/3): 105-110.
    [21]
    WANG K, DUBEY S. CHOO F H, et al. Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism[J]. Applied Energy, 2016, 171: 172-183. DOI: 10.1016/j.apenergy.2016.03.002
    [22]
    Swift G W, Gardner D L, Backhaus S. Acoustic recovery of lost power in pulse tube refrigerator[J]. J. Acoust. Soc. Am, 1999, 105(2): 711-724. DOI: 10.1121/1.426262
    [23]
    ZHU S, Kawano S, Nogawa M, et al. Pulse tube refrigerator 8, 389, 819, 2002. [P]. U. S. Patent.
    [24]
    Swift G W, Gardner D L, Backhaus S N. Quarter-wave pulse tube[J]. Cryogenics, 2011, 51(10): 575-583. DOI: 10.1016/j.cryogenics.2011.08.001
    [25]
    XU J, YU G, ZHANG L, et al. Numerical investigation on a 300 Hz pulse tube cryocooler driven by a three-stage traveling-wave thermo-acoustic heat engine[J]. Cryogenics, 2015, 71: 68-75. DOI: 10.1016/j.cryogenics.2015.06.003
    [26]
    XU J, HU J, ZHANG L, et al. Effect of coupling position on a looped three-stage thermo-acoustically-driven pulse tube cryocooler [J]. Energy, 2015, 93: 994-998. DOI: 10.1016/j.energy.2015.09.099
  • Related Articles

    [1]CHEN Yurou, ZHU Youpan, YU Jiatong, SUN Aiping. Research Status and Development of Non-Line-Of-Sight Activeand Passive Imaging[J]. Infrared Technology , 2025, 47(4): 501-509.
    [2]DONG Chao, LU Hai, SHEN Kesheng, XIONG Zonggang, LIU Xiaoyu, ZHANG Xianzhou. Research and Prospects of Infrared Antireflection Coatings[J]. Infrared Technology , 2018, 40(3): 209-213.
    [3]PAN Jing-sheng, SUN Jian-ning, JING Ge, REN Ling, MAO Han-qi, GU Yan, GUO Yi-liang, SU De-tan. The Potential and Prospect of Indium Gallium Arsenide Focal Plane Array Applied to Low Light Level Night Vision[J]. Infrared Technology , 2014, (6): 425-432.
    [4]SHEN Di, LI Cheng-fan, ZHAO Jun-juan, YIN Jing-yuan. Volcanic Ash Cloud Detection Based on Variational Bayesian ICA[J]. Infrared Technology , 2014, (2): 120-124.
    [5]ZENG Ge-hong, SHI Yan-li, ZHUANG Ji-sheng. Principles, Status and Prospect of Type Ⅱ Superlattice Infrared Detectors[J]. Infrared Technology , 2011, 33(6): 311-314. DOI: 10.3969/j.issn.1001-8891.2011.06.001
    [6]DAI Wen-jing, FANG Min. Infrared Detection Technology Application and Research on Power Station[J]. Infrared Technology , 2006, 28(5): 306-309. DOI: 10.3969/j.issn.1001-8891.2006.05.013
    [7]JI Rong-bin, TANG Li-bin, ZHANG Xiao-dan. The Prospect of the Study on Organic Semiconductor Detector Materials[J]. Infrared Technology , 2006, 28(1): 2-6. DOI: 10.3969/j.issn.1001-8891.2006.01.001
    [8]ZHAO Jie, G.Thummes. Experimental Analysis for a High Frequency Coaxial Pulse Tube Cooler with Different Inertance Tubes for IR Applications[J]. Infrared Technology , 2005, 27(2): 154-158. DOI: 10.3969/j.issn.1001-8891.2005.02.014
    [9]The Development of Infrared Stealthy Coatings and Their Future Prospects[J]. Infrared Technology , 2004, 26(2): 9-12. DOI: 10.3969/j.issn.1001-8891.2004.02.003
    [10]ZENG Xian-lin, TIAN Xin-wei. CO2 Laser Coherent Imaging Radar and Its Application Perspectives in Precision Guidance[J]. Infrared Technology , 2000, 22(4): 42-46. DOI: 10.3969/j.issn.1001-8891.2000.04.011

Catalog

    Article views (78) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return