WU Ze, MIAO Xiaodong, LI Weiwen, YU Hu. Low-Visibility Road Target Detection Algorithm Based on Infrared and Visible Light Fusion[J]. Infrared Technology , 2022, 44(11): 1154-1160.
Citation: WU Ze, MIAO Xiaodong, LI Weiwen, YU Hu. Low-Visibility Road Target Detection Algorithm Based on Infrared and Visible Light Fusion[J]. Infrared Technology , 2022, 44(11): 1154-1160.

Low-Visibility Road Target Detection Algorithm Based on Infrared and Visible Light Fusion

More Information
  • Received Date: July 12, 2022
  • Revised Date: November 01, 2022
  • Both infrared and visible images are widely used in the field of target detection; however, unimodal images find it difficult to satisfy the requirements of low-visibility road target detection. Therefore, this study proposes a low-visibility road target detection algorithm based on infrared-visible fusion from the perspective of bimodal fusion. First, the input images were pre-processed using various IR-visible dual-mode image fusion algorithms, five parameters, including mean, standard deviation, information entropy, mean gradient, and spatial frequency of the fused images, were quantitatively analyzed, and the detection model for low-visibility road targets was obtained by optimizing the training detection network. Finally, the accuracies of the algorithm and model were evaluated in terms of the model-training results and target detection results. The experimental results demonstrate that the false- and missed-detection rates of the model trained by the algorithm in this study were significantly reduced compared with other algorithms, and the detection accuracy was improved from 75.51% to 88.86% compared with the existing algorithm using unimodal images; in addition, the image processing speed satisfied the requirement for real-time detection.
  • [1]
    WANG Z G, ZHAN J, LI Y, et al. A new scheme of vehicle detection for severe weather based on multi-sensor fusion[J]. Measurement, 2022, 191: 14.
    [2]
    MIAO X, LI S, SHEN H, et al. Moving vehicle detection and tracking using monocular vision[J]. International Journal of Vehicle Safety, 2014, 7(3/4): 425-439. DOI: 10.1504/IJVS.2014.063247
    [3]
    李章维, 胡安顺, 王晓飞. 基于视觉的目标检测方法综述[J]. 计算机工程与应用, 2020, 56(8): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202008002.htm

    LI Z, HU A, WANG X. Survey of vision based object detection methods [J]. Computer Engineering and Application, 2020, 56(8): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202008002.htm
    [4]
    崔晓荣, 沈涛, 黄建鲁, 等. 基于BEMD改进的视觉显著性红外和可见光图像融合[J]. 红外技术, 2020, 42(11): 1061-1071. http://hwjs.nvir.cn/article/id/c89c0447-6d07-4a75-99f6-1bf8681cf588

    CUI X R, SHEN T, HUANG J L, et al. Infrared and visible image fusion based on BEMD and improved visual saliency[J]. Infrared Technology, 2020, 42(11): 1061-1071. http://hwjs.nvir.cn/article/id/c89c0447-6d07-4a75-99f6-1bf8681cf588
    [5]
    王文卿, 马笑, 刘涵. 基于联合低秩稀疏分解的红外与可见光图像融合[J]. 信号处理, 2021, 37(9): 1770-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN202109021.htm

    WANG W Q, MA X, LIU H. Infrared and visible image fusion via joint low-rank and sparse decomposition[J]. Journal of Signal Processing, 2021, 37(9): 1770-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN202109021.htm
    [6]
    武圆圆, 王志社, 王君尧, 等. 红外与可见光图像注意力生成对抗融合方法研究[J]. 红外技术, 2022, 44(2): 170-178. http://hwjs.nvir.cn/article/id/7f2ae6e4-af9c-4929-a689-cb053b4dda85

    WU Y Y, WANG Z S, WANG J Y, et al. Infrared and visible image fusion using attention- based generative adversarial networks[J]. Infrared Technology, 2022, 44(2): 170-178. http://hwjs.nvir.cn/article/id/7f2ae6e4-af9c-4929-a689-cb053b4dda85
    [7]
    REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39: 1137-1149.
    [8]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans Pattern Anal Mach Intell. , 2015, 37(9): 1904-1916.
    [9]
    WEI L, Dragomir A, Dumitru E, et al. SSD: single shot multibox detector[J/OL]. ECCV, 2016: 21-37, Doi: 10.1007/978-3-319-46448-0_2.
    [10]
    Bochkovskiy A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[J/OL]. Computer Science, 2020, arXiv: 2004.10934.
    [11]
    ZHAO Q, SHENG T, WANG Y, et al. M2Det: A single-shot object detector based on multi-level feature pyramid network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 9259-9266.
    [12]
    许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202108003.htm

    XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning [J]. Computer Engineering and Application, 2021, 57(8): 10-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202108003.htm
    [13]
    任全会, 孙逸洁, 黄灿胜. 基于区域间相似度的红外与可见光图像融合算法研究[J]. 红外技术, 2022, 44(5): 492-496. http://hwjs.nvir.cn/article/id/0101943c-987d-48e8-ba4d-1748f31d4bbf

    REN H Q, SUN Y J, HUANG C S. Infrared and visible image fusion algorithm based on regional similarity [J]. Infrared Technology, 2022, 44(5): 492-496. http://hwjs.nvir.cn/article/id/0101943c-987d-48e8-ba4d-1748f31d4bbf
    [14]
    Bavirisetti D P, Dhuli R. Two-scale image fusion of visible and infrared images using saliency detection [J]. Infrared Physics and Technology, 2016, 76: 52-64.
    [15]
    余汪洋, 陈祥光, 董守龙, 等. 基于小波变换的图像融合算法研究[J]. 北京理工大学学报, 2014, 34(12): 1262-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201412010.htm

    YU W Y, CHEN X G, DONG S L, et al. Study on image fusion algorithm based on wavelet transform[J]. Transactions of Beijing Institute of Technology, 2014, 34(12): 1262-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201412010.htm
    [16]
    Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger [C]// IEEE Conference on Computer Vision & Pattern Recognition, 2017: 6517-6525.
  • Related Articles

    [1]Analysis of Atmospheric Transmission Impact on Mid-wave and Long-wave Infrared Radiation[J]. Infrared Technology , 2019, 41(4): 311-316.
    [2]YANG Dong, CAO Yaoxin, LI Jian, XUE Fenfen, SONG Minmin. The Study on Separation Characteristic of Airborne Infrared Decoy and Simulation[J]. Infrared Technology , 2018, 40(6): 585-589.
    [3]GAO Wen-guang, SUN Ji-yin, LIU Hao. The Simulation Models of Atmospheric Infrared Emissinon Based on Database[J]. Infrared Technology , 2010, 32(6): 333-336. DOI: 10.3969/j.issn.1001-8891.2010.06.006
    [4]MEI Fei, JIANG Yong, ZHANG Bai-ling, CHEN Shi-guo, CHEN Ge. Jet engine Infrared Signature Modeling and Simulation[J]. Infrared Technology , 2008, 30(11): 638-642. DOI: 10.3969/j.issn.1001-8891.2008.11.005
    [5]ZHOU Guo-hui, LIU Xiang-wei, XU ji-wei. A Math Model of Calculate the Atmospheric Transmittance Of Infrared Radiation[J]. Infrared Technology , 2008, 30(6): 331-334. DOI: 10.3969/j.issn.1001-8891.2008.06.006
    [6]LI Jin-ping, LIU Zi-qiang, YU ying, ZHANG Wei-wei. A Research on Atmospheric Radiation Correction Method Based on NOAAY Satellite Image Information[J]. Infrared Technology , 2008, 30(6): 316-320. DOI: 10.3969/j.issn.1001-8891.2008.06.002
    [7]YI Ya-xing, YAO Mei, WANG Guo-yu, CHEN Yong-guang. An Analysis of Atmospheric Influence to Detectability of Infrared Targets[J]. Infrared Technology , 2006, 28(2): 120-123. DOI: 10.3969/j.issn.1001-8891.2006.02.016
    [8]The Simple Method to Calculate the Atmosphere Transmittance of Infrared Radiation[J]. Infrared Technology , 2003, 25(5): 45-49,53. DOI: 10.3969/j.issn.1001-8891.2003.05.012
    [9]Transmission of Two Wave Bands Infrared Radiation Ratio of Aerial Object in the Atmosphere[J]. Infrared Technology , 2003, 25(1): 40-43. DOI: 10.3969/j.issn.1001-8891.2003.01.009
    [10]A Method of Calculating the Atmosphere Transmissibility[J]. Infrared Technology , 2002, 24(6): 51-53. DOI: 10.3969/j.issn.1001-8891.2002.06.012
  • Cited by

    Periodical cited type(4)

    1. 郭浩,杨建峰,马小龙,吕娟. 用于火星沙尘暴探测的广角多光谱成像光学系统设计. 光子学报. 2025(04): 63-77 .
    2. 刘一帆,周峰,胡斌,晋利兵. 基于Q型非球面的全景环带红外光学系统设计. 航天返回与遥感. 2024(01): 90-98 .
    3. 王彩霞,陈洪耀,司孝龙,李鑫,李佳伟,张黎明,包诗薇. 多波段鱼眼镜头相机实验室几何定标方法. 光子学报. 2024(08): 187-200 .
    4. 上官佳伟,李永亮,冯海龙,张馨元,王宁,李佳航. 大视场医用电子内窥镜光学成像系统研究综述. 激光杂志. 2024(08): 1-5 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return