GUO Yuting, JIA Xiaohong, LI Lijuan, LIU Junming. Space-Time Domain Adaptive Filtering Non-uniformity Correction Algorithm[J]. Infrared Technology , 2023, 45(5): 482-487.
Citation: GUO Yuting, JIA Xiaohong, LI Lijuan, LIU Junming. Space-Time Domain Adaptive Filtering Non-uniformity Correction Algorithm[J]. Infrared Technology , 2023, 45(5): 482-487.

Space-Time Domain Adaptive Filtering Non-uniformity Correction Algorithm

More Information
  • Received Date: April 18, 2022
  • Revised Date: June 01, 2022
  • Because the infrared focal plane detector is limited by manufacturing technology, the image is inevitably nonuniform. The traditional neural network algorithm solves the "ghost" problem using the guided filtering image as the expected template to prevent image edge smoothing by the filter. When the scene is moving, the nonuniformity correction parameters are continuously updated using the time-domain iteration strategy. To suppress the common ghosting phenomenon in the algorithm, an adaptive learning rate was designed based on a combination of the spatial local variance and the time-domain scene change rate, and the threshold was adjusted adaptively using the correction parameters before and after. Simulation results show that the root mean square error of the proposed algorithm is reduced by 45.45% compared with that of the traditional algorithm, and the proposed algorithm can suppress the "ghost" phenomenon well while correcting image nonuniformity.
  • [1]
    马晓平, 赵良玉. 红外导引头关键技术国内外研究现状综述[J]. 航空兵器, 2018(3): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201803001.htm

    MA Xiaoping, ZHAO Liangyu. An overview of infrared seeker key technologies at home and abroad[J]. Aero Weaponry, 2018(3): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201803001.htm
    [2]
    周永康, 朱尤攀, 赵德利, 等. 基于场景的红外焦平面非均匀校正算法综述[J]. 红外技术, 2018, 40(10): 952-960. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201810005.htm

    ZHOU Yongkang, ZHU Youpan, ZHAO Deli, et al. Overview of scene-based non-uniform correction algorithms for infrared focal plane[J]. Infrared Technology, 2018, 40(10): 952-960. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201810005.htm
    [3]
    李旭, 杨虎. 基于两点的红外图像非均匀性校正算法应用[J]. 红外与激光工程, 2008, 37: 608-610. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2008S2064.htm

    LI Xu, YANG Hu. Application of a non-uniformity correction algorithm for IRFPAs based on two points[J]. Infrared and Laser Engineering, 2008, 37: 608-610. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2008S2064.htm
    [4]
    关同辉, 张同贺. 一种新型实时两点非均匀性校正方法[J]. 航空兵器, 2021, 28(4): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202104018.htm

    GUAN Tonghui, ZHANG Tonghe. A new real-time two-point non-uniformity correction method[J]. Aero Weaponry, 2021, 28(4): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202104018.htm
    [5]
    陈芳林. 基于场景的红外焦平面非均匀性校正算法及FPGA实现[D]. 南京: 南京理工大学, 2017.

    CHEN Fanglin. Scene-based Infrared Focal Plane Non-Uniformity Correction Algorithm and FPGA Implementation[D]. Nanjing: Nanjing University of Science and Technology, 2017.
    [6]
    钱润达, 赵东, 周慧鑫, 等. 基于加权引导滤波与时域高通滤波的非均匀性校正算法[J]. 红外与激光工程, 2018, 47(12): 1204001-1-1204001-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201812022.htm

    QIAN Runda, ZHAO Dong, ZHOU Huixin, et al. Non-uniformity correction algorithm based on weighted guided filter and temporal high-pass filter[J]. Infrared and Laser Engineering, 2018, 47(12): 1204001 -1-1204001-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201812022.htm
    [7]
    徐泽林, 路东明, 王利平, 等. 利用灰度差估计的条纹非均匀性校正方法[J]. 光学学报, 2021, 41(5): 511001-1-511001-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202105004.htm

    XU Zelin, LU Dongming, WANG Liping, et al. Fringe non-uniformity correction method based on gray different estimation[J]. Acta Optica Sinic, 2021, 41(5): 511001-1-511001-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202105004.htm
    [8]
    CHAO Zuo, QIAN Chen, GU Guohua, et al. Improved interframe registration based nonuniformity correction for focal plane arrays[J]. Infrared Physics & Technology, 2012, 55(4): 263-269. . http://www.onacademic.com/detail/journal_1000035395320710_83c7.html
    [9]
    ZUO C, ZHANG Y, CHEN Q, et al. A two-frame approach for scene-based nonuniformity correction in array sensors[J]. Infrared Physics & Technology, 2013, 60(1): 190-196. http://www.zuochao.org/uploads/1/1/0/7/11076000/2013_irt_tfnuc.pdf
    [10]
    李谦, 杨波, 粟宇路, 等. 基于神经网络的红外焦平面光学非均匀性校正改进算法[J]. 红外技术, 2019, 41(3): 251-255. http://hwjs.nvir.cn/article/id/hwjs201903009

    LI Qian, YAN Bo, SU Yulu, et al. An improved algorithm for irfpa optical nonuniformity correction based on neural networks[J]. Infrared Technology, 2019, 41(3): 251-255. http://hwjs.nvir.cn/article/id/hwjs201903009
    [11]
    RONG Shenghui, ZHOU Huixin, QIN Hanlin, et al. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array[J]. Infrared Physics & Technology, 2016, 76: 691-697. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1350449515300529&originContentFamily=serial&_origin=article&_ts=1480172376&md5=3e335208352d8436eca4420b9fdcff9b
    [12]
    刘会通, 马红伟. 自适应非均匀性校正中"鬼影"问题的分析[J]. 红外技术, 2003, 23(5): 30-36. DOI: 10.3969/j.issn.1001-8891.2003.05.008

    LIU Huitong, MA Hongwei. An analysis of the ghosting artifact in adaptive nonuniformity correction[J]. Infrared Technology, 2003, 23(5): 30-36. DOI: 10.3969/j.issn.1001-8891.2003.05.008
    [13]
    陈芳林, 张宝辉, 汪贵华, 等. 改进的神经网络非均匀性校正算法研究[J]. 科学技术与工程, 2016, 33(16): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201633039.htm

    CHEN Fanglin, ZHANG Baohui, WANG Guihua, et al. Research on improved neural network non-uniformity correction algorithm[J]. Science Technology and Engineering, 2016, 33(16): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201633039.htm
    [14]
    Scribner D A, Caulfield J T. Nonuniformity correction for staring IR focal plane arrays using scene - based techniques[C]//Proceedings of SPIE the International Society for Optical Engineering, 1990, 12: 21730.
    [15]
    张红辉, 罗海波, 余新荣, 等. 改进的神经网络红外图像非均匀性校正方法[J]. 红外技术, 2013, 35(4): 232-237. http://hwjs.nvir.cn/article/id/hwjs201304011

    ZHANG Honghui, LUO Haibo, YU Xinrong, et al. Improved algorithm of neural network used in IR image non-uniformity correction[J]. Infrared Technology, 2013, 35(4): 232-237. http://hwjs.nvir.cn/article/id/hwjs201304011
    [16]
    张菲菲, 王文龙, 马国锐, 等. 基于非局部均值滤波与神经网络的红外焦平面阵列非均匀性校正算法[J]. 红外技术, 2015, 37(4): 265-271. http://hwjs.nvir.cn/article/id/hwjs201504001

    ZHANG Feifei, WANG Wenlong, MA Guorui, et al. Neural network nonuniformity correction algorithm for infrared focal plane array based on non-local means filter[J]. Infrared Technology, 2015, 37(4): 265-271. http://hwjs.nvir.cn/article/id/hwjs201504001
    [17]
    陆余洋君. 基于神经网络的红外焦平面非均匀性校正算法研究与FPGA实现[D]. 合肥: 中国科学技术大学, 2021.

    LU Yuyangjun. Research on Algorithms Nonuniformity Correction on Infrared Focal Plane Array Based on Neural Net Works and FPGA Implement[D]. Hefei: University of Science and Technology of China, 2021.
  • Related Articles

    [1]CHEN Xiaohan, XU Yuanyuan. Infrared Multi-Scale Target Detection Algorithm Based on RCR-YOLO[J]. Infrared Technology , 2025, 47(4): 459-467.
    [2]LIU Xin, ZHANG Bin. Electronic Zooming of Infrared Image Based on Lightweight Multi-scale Aggregation Network[J]. Infrared Technology , 2025, 47(4): 445-452.
    [3]YE Baicheng, ZHU Youpan, ZHOU Yongkang, DUAN Chenhao, ZHANG Yudong, TAO Zhigang, FU Zhiyu. Review of Lightweight Target Detection Algorithms[J]. Infrared Technology , 2025, 47(3): 289-298.
    [4]CHEN Yonglin, WANG Hengtao, ZHANG Shang. Lightweight Infrared Target Detection Algorithm Based on YOLO v7[J]. Infrared Technology , 2024, 46(12): 1380-1389.
    [5]SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology , 2024, 46(2): 162-167.
    [6]ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
    [7]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [8]SUN Shixin, ZHENG Zhiyun. Genetic Algorithm for Infrared Multi-target Detection Based on Multi-scale NNLoG Feature[J]. Infrared Technology , 2019, 41(9): 837-842.
    [9]SHEN Xu, CHENG Xiaohui, WANG Xinzheng. Infrared Dim-small Object Detection Algorithm Based on Adaptive Scale Local Contrast Enhancement Combined with Visual Attention Mechanism[J]. Infrared Technology , 2019, 41(8): 764-771.
    [10]WANG Yu-xiang, HAN Zhen-duo, WANG Hong-min. Detection Algorithm for Dim Infrared Target Based on Multi-Difference Factor[J]. Infrared Technology , 2012, 34(6): 351-355. DOI: 10.3969/j.issn.1001-8891.2012.06.009
  • Cited by

    Periodical cited type(5)

    1. 李鹏. 基于红外测温技术的农村配网设备运行监测研究. 中国新技术新产品. 2025(03): 127-129 .
    2. 樊慧文. 深度学习在输变电设备故障状态检测中的应用研究. 电工技术. 2025(02): 95-97+101 .
    3. 刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展. 中国电机工程学报. 2025(06): 2171-2196 .
    4. 李冰,杜喜英,王玉莹,翟永杰. 基于改进YOLOv8n的变电设备红外图像实例分割算法. 电子测量技术. 2024(10): 151-159 .
    5. 佟忠正,孙旸子. 基于U-Net网络的电力设备巡检图像增强模型及其自动控制研究. 自动化与仪表. 2024(11): 79-82+91 .

    Other cited types(1)

Catalog

    Article views (183) PDF downloads (63) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return