CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531.
Citation: CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531.

Identification of Pipeline Thermal Image Leakage Based on Deep Learning

More Information
  • Received Date: September 07, 2023
  • Revised Date: January 18, 2024
  • Available Online: May 23, 2024
  • To reduce the difficulty of detecting tiny leakages at multiple leakage points in liquid pipelines, it is necessary to improve the detection accuracy and speed of the leakage points. Bilateral filtering based on nonlinear stationary wavelets is proposed to achieve image noise reduction by building a water circulation pipeline leakage experiment system, changing the sizes and number of the leakage points, changing the temperature of the conveying medium, and applying an infrared thermal imager to monitor the small leakage of the single and complex leakage points. Combined with infrared nondestructive testing technology and a YOLO v4 network model, this study realized the automatic intelligent detection of single and multiple leakage points of liquid pipelines. The results show that compared with the traditional filtering algorithm, the peak signal to noise ratio and structural similarity evaluation indexes of the noise reduction method are improved. The model can quickly and accurately detect and locate single and multiple leakage points of pipelines. The average detection accuracy (mAP) values of the single and multiple leakage points in complex environment reach 0.9822 and 0.98, respectively. Further, the accuracy rates reach 98.3% and 98.36%, and the single frame detection times reach 0.3021 s and 0.3096 s, respectively. This helps realize the identification of leakage points under complex background interference. In comparison with YOLO v3, Faster R-CNN, and SSD 300, the YOLO v4 algorithm has better accuracy, mAP, and t for the detection of single and multiple leakage points and has a higher detection accuracy and detection efficiency.

  • [1]
    Adegbove M A, Fung W K, Karnik A. Recent advances in pipeline monitoring and oil leakage detection technologies: principles and approaches[J]. Sensors, 2019, 19(11): 2548. DOI: 10.3390/s19112548
    [2]
    ZHOU S J, LIU C, ZHAO Y E, et al. Leakage diagnosis of heating pipe-network based on BP neural network[J]. Sustainable Energy, Grids and Networks, 2022, 32: 100869. DOI: 10.1016/j.segan.2022.100869
    [3]
    孙宗康, 饶睦敏, 曹裕灵, 等. 基于小样本不均衡数据的供水管道泄漏智能检测算法[J]. 图学学报, 2022, 43(5): 825-831. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX202205008.htm

    SUN Z K, RAO M M, CAO Y L, et al. Water supply pipeline leakage intelligent detection algorithm based on small and unbalanced data [J]. Journal of Graphics, 2022, 43(5): 825-831. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX202205008.htm
    [4]
    石光辉, 齐卫雪, 陈鹏, 等. 负压波与小波分析定位供热管道泄漏[J]. 振动与冲击, 2021, 40(14): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202114028.htm

    SHI G H, QI W X, CHEN P, et al. Negative pressure wave and wavelet analysis to locate the heating pipeline leakage[J]. Journal of Vibration and Impact, 2021, 40(14): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202114028.htm
    [5]
    薛田甜, 刘永莉, 陈智, 等. 基于分布式光纤测温技术的管廊管道泄漏检测设计[J]. 中国科技论文, 2023, 18(8): 867-874, 889. DOI: 10.3969/j.issn.2095-2783.2023.08.008

    XUE T T, LIU Y L, CHEN Z, et al. Design of pipeline leakage detection based on distributed temperature sensing technology[J]. China Science Paper, 2023, 18(8): 867-874, 889. DOI: 10.3969/j.issn.2095-2783.2023.08.008
    [6]
    高琳, 曹建国. 基于输气管道泄漏声发射信号特征的小波基构造研究[J]. 振动与冲击, 2023, 42(10): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202310016.htm

    GAO L, CAO J G. Research on wavelet basis construction based on the characteristics of acoustic emission signals in gas pipe leakage [J]. Journal of Vibration and Impact, 2023, 42(10): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202310016.htm
    [7]
    徐志远, 肖奇. 基于脉冲远场涡流的管道缺陷外检测与定量评估[J]. 电子测量与仪器学报, 2019, 33(2): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201902011.htm

    XU Z Y, XIAO Q. Outside inspection and quantitative evaluation of pipe defects based on pulsed remote field eddy currents[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(2): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201902011.htm
    [8]
    李甲振, 余弘婧, 郭新蕾, 等. 管道系统泄漏的可控低强度瞬变流检测法[J]. 应用基础与工程科学学报, 2022, 30(4): 873-882. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202204007.htm

    LI J Z, YU H J, GUO X L, et al. Leak detection in pipe using controllable and low-pressure transient analysis method[J]. Journal of Basic Science and Engineering, 2022, 30(4): 873-882. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202204007.htm
    [9]
    Fahimipirehgalin M, Trunzer E, Odenweller M, et al. Automatic visual leakage detection and localization from pipelines in chemical process plants using machine vision techniques[J]. Engineering, 2021, 7(6): 758-776. DOI: 10.1016/j.eng.2020.08.026
    [10]
    张丽珍, 徐长航, 陈国明. 基于红外成像技术的高温管道泄漏检测研究[C]//第二届CCPS中国过程安全会议, 2014: 389-394.

    ZHANG L Z, XU C H, CHEN G M. The detection of high-temperature pipe leakage by infrared thermography[C]//Proceedings of the 2nd CCPS China Process Safety Conference, 2014: 389-394.
    [11]
    张艳博, 任瑞峰, 梁鹏, 等. 基于热成像的埋地热力管道缺陷检测试验研究[J]. 仪器仪表学报, 2020, 41(6): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202006019.htm

    ZHANG Y B, REN R F, LIANG P, et al. Experimental study on flaw detection of buried heat pipeline based by infrared thermal[J]. Chinese Journal of Scientific Instrument, 2020, 41(6): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202006019.htm
    [12]
    Yahia M, Gawai R, Ali T, et al. Non-destructive water leak detection using multitemporal infrared thermography[J]. IEEE Access, 2021, 9: 72556-72567. DOI: 10.1109/ACCESS.2021.3078415
    [13]
    XIE J, ZHANG Y, HE Z, et al. Automated leakage detection method of pipeline networks under complicated backgrounds by combining infrared thermography and Faster R-CNN technique[J]. Process Safety and Environmental Protection, 2023, 174: 39-52. DOI: 10.1016/j.psep.2023.04.006
    [14]
    ZHOU R L, WEN Z P, SU H Z. Detect submerged piping in river embankment by passive infrared thermography[J]. Measurement, 2022, 202: 111873. DOI: 10.1016/j.measurement.2022.111873
    [15]
    翟潘, 王平. 自适应维纳滤波在钢水红外图像去噪中的应用[J]. 红外技术, 2021, 43(7): 665-669. http://hwjs.nvir.cn/cn/article/id/0a8e3190-fcd2-405b-9b8f-0cd65fb70cd5

    ZHAI P, WANG P. Application of the adaptive wiener filter in infrared image denoising for molten steel [J]. Infrared Technology, 2021, 43(7): 665-669. http://hwjs.nvir.cn/cn/article/id/0a8e3190-fcd2-405b-9b8f-0cd65fb70cd5
    [16]
    郭晨龙, 赵旭阳, 郑海燕, 等. 一种基于改进非局部均值滤波算法的红外图像去噪[J]. 红外技术, 2018, 40(7): 638-641. http://hwjs.nvir.cn/cn/article/id/hwjs201807003

    GUO C L, ZHAO X Y, ZHENG H Y, et al. Infrared image denoising method based on improved non-local means filter[J]. Infrared Technology, 2018, 40(7): 638-641. http://hwjs.nvir.cn/cn/article/id/hwjs201807003
    [17]
    ZHAO X H, LI M X, NIE T, et al. An innovative approach for removing stripe noise in infrared images[J]. Sensors, 2023, 23: 6786. DOI: 10.3390/s23156786
    [18]
    ZHANG X, SANIIE J, BAKHTIARI S, et al. Unsupervised learning for detection of defects in pulsed infrared thermography of metals[C]// IEEE International Conference on Electro Information Technology (EIT), 2022: 330-334.
    [19]
    ZHANG X, SANIIE J, BAKHTIARI S, et al. Compression of pulsed infrared thermography data with unsupervised learning for nondestructive evaluation of additively manufactured metals[J]. IEEE Access, 2022, 10: 9094-9107. DOI: 10.1109/ACCESS.2022.3141654
    [20]
    WANG H, HOU Y, HE Y, et al. A physical-constrained decomposition method of infrared thermography: pseudo restored heat flux approach based on ensemble bayesian variance tensor fraction[J]. IEEE Transactions on Industrial Informatics, 2023, 20(3): 3413-3424.
    [21]
    Kumar A, Tomar H, Mehla Kumar V, et al, Stationary wavelet transform based ECG signal denoising method[J]. ISA Transactions, 2021, 114: 251-262. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202403024.htm
    [22]
    Kumar S, Alam K, Chauhan A. Fractional derivative based nonlinear diffusion model for image denoising[J]. SeMA Journal, 2022, 79: 355-364. DOI: 10.1007/s40324-021-00255-0
    [23]
    王玉灵. 基于双边滤波的图像处理算法研究[D]. 西安: 西安电子科技大学, 2010.

    WANG Y L. Study of algorithm in image processing based on the bilateral filter[D]. Xi'an: XiDian University, 2010.
    [24]
    Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[C]//IEEE Conference Computer Vision and Pattern Recognition, 2020: 10934-10951.
    [25]
    中华人民共和国住房和城乡建设部. 建筑给水排水设计标准GB50015-2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of building water supply and drainage[S]. Beijing: China Planning Press, 2019.
    [26]
    LIU R C, LI Y F, WANG H D, et al. A noisy multi-objective optimization algorithm based on mean and Wiener filters[J]. Knowledge-Based Systems, 2021, 228: 107215. DOI: 10.1016/j.knosys.2021.107215
    [27]
    Verma, K, Singh K B, Thoke A. S. An enhancement in adaptive median filter for edge preservation[J]. Procedia Computer Science, 2015, 48: 29-36. DOI: 10.1016/j.procs.2015.04.106
    [28]
    魏明强, 冯一箪, 王伟明, 等. 基于区间梯度的联合双边滤波图像纹理去除方法[J]. 计算机科学, 2018, 45(3): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201803005.htm

    WEI M Q, FENG Y D, WANG W M, et al. Interval gradient based joint bilateral filtering for image texture removal[J]. Computer Science, 2018, 45(3): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201803005.htm
    [29]
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031
    [30]
    LIU W, Anguelov D, Erhan D, et al. SSD: single shot multi-box detector[C]//Proceedings of the IEEE European Conference on Computer Vision, 2016: 21-37.
    [31]
    Redmon J, Farhad A. Yolov3: an incremental improvement[C]// Computer Vision and Pattern Recognition, 2018: 1068-1076.
  • Related Articles

    [1]CHEN Xin, CHEN Yong, DENG Xuguang, JIN Libing, ZHANG Jiushuang, TONG Weiming, SHI Manli, LYU Weidong, ZHOU Ji. Design of Quantum Efficiency Calculation Software for Infrared Focal Plane Detectors[J]. Infrared Technology , 2025, 47(5): 578-583.
    [2]WANG Yi-feng, TANG Li-bin. Analysis and Computation of Forbidden Band Structure of One-Dimensional Photonic Crystal with MATLAB[J]. Infrared Technology , 2011, 33(1): 21-26. DOI: 10.3969/j.issn.1001-8891.2011.01.006
    [3]ZHENG Kun-peng, ZHOU Guo-yin, WANG Pu-kai, LV Liang-dong. The Extracting Method of Tank Feature Vector from Infrared Images Based on MATLAB[J]. Infrared Technology , 2010, 32(11): 625-628. DOI: 10.3969/j.issn.1001-8891.2010.11.002
    [4]WANG Yi-feng, MAO Jing-xiang, FAN Nai-hua. Computation of Effectiveness of Baffled Cold Shield with Monte Carlo Method and MATLAB[J]. Infrared Technology , 2010, 32(9): 513-516. DOI: 10.3969/j.issn.1001-8891.2010.09.005
    [5]WANG Yi-feng, TANG Li-bin. Direct Solution of Two-dimensional Poisson Equation with Finite Difference and MATLAB Matrix Computation[J]. Infrared Technology , 2010, 32(4): 213-216,230. DOI: 10.3969/j.issn.1001-8891.2010.04.007
    [6]WANG Yi-feng, TANG Li-bin. A Simple Method for Solution of One-dimensional Schr(o)dinger Equation with Transfer Matrix and MATLAB[J]. Infrared Technology , 2010, 32(3): 177-180. DOI: 10.3969/j.issn.1001-8891.2010.03.014
    [7]ZHANG Lei, SUN Wei-guo, CHEN Hong-xu, MENG Chao, PENG Jing. Performance Simulation of Dual Band IR Imaging Detector Based on MATLAB[J]. Infrared Technology , 2010, 32(1): 11-16. DOI: 10.3969/j.issn.1001-8891.2010.01.003
    [8]WANG Yi-feng, MAO Jing-xiang. Determination of Wavelength Difference of Adjacent Spectral Lines in Spectrometer with MATLAB and Concave Depth of Synthesized Line[J]. Infrared Technology , 2008, 30(9): 551-552. DOI: 10.3969/j.issn.1001-8891.2008.09.014
    [9]The Application of MATLAB in the Visualization of Infrared Analysis[J]. Infrared Technology , 2004, 26(4): 65-68. DOI: 10.3969/j.issn.1001-8891.2004.04.015
    [10]The Application of Image Displaying Technology of Using MATLAB as a Server in the Profilometry[J]. Infrared Technology , 2002, 24(6): 69-72. DOI: 10.3969/j.issn.1001-8891.2002.06.016
  • Cited by

    Periodical cited type(5)

    1. 刘晏长. 装配式钢结构建筑抗侧力支架缺陷超像素级Gabor识别方法. 无损检测. 2025(04): 33-38 .
    2. 杨超,孙虎,唐超. 电磁脉冲涡流检测下金属管道缺陷检测研究. 电子测量与仪器学报. 2025(04): 132-140 .
    3. 胡光锋. 基于红外热成像技术的动车组关键部位表面伤痕检测方法. 现代制造技术与装备. 2024(02): 92-94 .
    4. 张玉彬,陈丽娜,刘鹏谦,赵擎,刘蕊,王龙博,谢静,徐长航. CFRP-钢胶接结构内部损伤的增强型电磁感应热成像检测. 复合材料学报. 2024(09): 5004-5015 .
    5. 周鹍,郭俊鑫,罗杰,李云红,李丽敏,苏雪平,侯乐乐. 基于红外测温数据的水电站设备缺陷检测方法. 红外技术. 2024(11): 1308-1314 . 本站查看

    Other cited types(5)

Catalog

    Article views (119) PDF downloads (34) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return