GAO Tianyang, CAO Fengmei, WANG Xia, CUI Zhigang. Direct Coupling of Low Light Image Intensifier with Large Size CMOS[J]. Infrared Technology , 2021, 43(6): 537-542.
Citation: GAO Tianyang, CAO Fengmei, WANG Xia, CUI Zhigang. Direct Coupling of Low Light Image Intensifier with Large Size CMOS[J]. Infrared Technology , 2021, 43(6): 537-542.

Direct Coupling of Low Light Image Intensifier with Large Size CMOS

More Information
  • Received Date: September 13, 2020
  • Revised Date: October 24, 2020
  • The large size direct coupling technology was studied by coupling a 40 mm diameter image intensifier with a full-frame CMOS. To solve the problems of large-size ICCD/ICMOS made by lens coupling, such as large volume, large light energy loss, and large number of moiré fringes in optical cone coupling devices, a direct coupling process is proposed to make ICCD/ICMOS. The large-size ICMOS developed in this study can obtain more information in the field of view. The resolution of the entire device is up to 3600×1800, the picture is clear, there is no obvious moiré fringe, and the structure is compact. The entire device has the size of a handheld digital camera and has strong concealability, which is conducive to obtaining target information more accurately and quickly in a complex environment.
  • [1]
    白廷柱. 光电成像技术与系统[M]. 北京: 电子工业出版社, 2016.

    BAI Tingzhu. Photoelectric Imaging Technology and System[M]. Beijing: Electronic Industry Press, 2016.
    [2]
    PROXITRONIC Detector Systems GmbH. Image- intensifier- general- information[EB/OL][2011-07-21]. www.proxitronic.de.
    [3]
    金伟其, 陶禹, 石峰, 等. 微光视频器件及其技术的进展[J]. 红外与激光工程, 2015, 44(11): 3167-3176. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511001.htm

    JIN Weiqi, TAO Yu, SHI Feng, et al. Progress of low-light video device and its technology[J]. Infrared and Laser Engineering, 2015, 44(11): 3167-3176. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511001.htm
    [4]
    王红球. 用于生物探测的制冷型ICCD系统[D]. 北京: 清华大学, 2007.

    WANG Hongqiu. Refrigerated ICCD System for Biological Detection[D]. Beijing: Tsinghua University, 2007.
    [5]
    闫晓梅, 王志社. 基于光锥耦合的X射线像增强器[J]. 光学学报, 2010(5): 1478-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201005051.htm

    YAN Xiaomei, WANG Zhishe. X-ray image intensifier based on optical cone coupling[J]. Acta Opticasinica, 2010(5): 1478-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201005051.htm
    [6]
    崔志刚. ICCD光锥耦合技术研究及性能分析[D]. 北京: 北京理工大学, 2008.

    CUI Zhigang. Research and Performance Analysis of Optical Cone Coupling Technology of ICCD[D]. Beijing: Beijing Institute of Technology, 2008.
    [7]
    PROXITRONIC Detector Systems GmbH. Intensified CCDs with Direct Fiber Optical Coupling[EB/OL][2011-07-21]. www.proxitronic.de.
    [8]
    朱广亮. ICCD系统耦合工艺研究与结构设计[D]. 北京: 北京理工大学, 2016.

    ZHU Guangliang. Research and Structure Design of ICCD System Coupling Process[D]. Beijing: Beijing Institute of Technology, 2016.
    [9]
    张宇. ICCD/ICMOS莫尔效应及其影响研究[D]. 北京: 北京理工大学, 2018.

    ZHANG Yu. Study on ICCD/ICMOS Mohr Effect and its Influence[D]. Beijing: Beijing Institute of Technology, 2018.
    [10]
    俞斯乐, 郭福云, 李桂苓, 等. 电视原理[M]. 北京: 国防工业出版社, 1984.

    YU Sile, GUO Fuyun, LI Guiling, et al. Television Principles[M]. Beijing: National Defense Industry Press, 1984.
  • Related Articles

    [1]LYU Zongwang, NIU Hejie, SUN Fuyan, ZHEN Tong. Review of Research on Low-Light Image Enhancement Algorithms[J]. Infrared Technology , 2025, 47(2): 165-178.
    [2]CHENG Hongchang, DANG Xiaogang, FENG Danqing, SU Yue, ZUO Zhiwei, BAI Xiaofeng, LI Zhoukui, SHI Hongli, YAN Lei, HOU Zhipeng, YAO Ze, SHI Feng. Development of Low-Light-Level Night Vision Equipment Abroad[J]. Infrared Technology , 2024, 46(12): 1399-1410.
    [3]NIU Qun, SHI Lixia, WANG Jinsong, TANG Zhuo. Low-light Image Enhancement Based on Detail Preservation and Brightness Fusion[J]. Infrared Technology , 2024, 46(10): 1162-1171.
    [4]YANG Feng, ZHAO Weijun, GU Yan, DONG Junyuan, LYU Yang, LI Haisheng, GUO Yiliang, ZHU Bo. Low-light Image Enhancement via Detail Saliency Estimation[J]. Infrared Technology , 2024, 46(10): 1145-1153.
    [5]GU Ziyue, NA Qiyue, XU Jiandong, SHEN Ji, CHANG Weijing. Development of a Novel Polarization Low-light EMCCD Sensor[J]. Infrared Technology , 2024, 46(10): 1138-1144.
    [6]LI Yaqing, LI Hanyan, ZHANG Liyun, CHEN Xuhua, LI Xiaolu, QIU Yongsheng, HE Jun, GAO Tianli, DU Peide, ZHOU Shengtao. Evaluation of Direct-coupled Intensified CMOS Camera[J]. Infrared Technology , 2024, 46(6): 699-706, 721.
    [7]ZHANG Yabang, LI Jiayue, WANG Manli. An Algorithm for Low-Light Image Enhancement in Coal Mines Based on HSV Space[J]. Infrared Technology , 2024, 46(1): 74-83.
    [8]FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194.
    [9]JIANG Mai, SHA Guijun, LI Ning. Infrared and Low-level Visible Light Images Fusion Based on Perception Unified Color Space and Dual Tree Complex Wavelet Transform[J]. Infrared Technology , 2022, 44(7): 716-725.
    [10]JING Weiguo, WANG Hongpei, LUAN Guangqi, WANG Chenhui. Reconnaissance Capability of Low-Light Level Equipment Based on Imaging Contrast[J]. Infrared Technology , 2022, 44(4): 389-396.
  • Cited by

    Periodical cited type(4)

    1. 李亚情,李晗艳,张立昀,陈旭华,李晓露,邱永生,何俊,高天礼,杜培德,周盛涛. 直耦增强型CMOS相机技术研究. 红外技术. 2024(06): 699-706+721 . 本站查看
    2. 任宇航,李斌康,周二瑞,杨少华,严明,郭明安,李刚,刘璐,王晶,时明月. 基于视场分割模型的闪光照相系统图像畸变校正. 激光与光电子学进展. 2024(24): 45-52 .
    3. 王霞,张鑫,焦岗成,杨晔,程宏昌,延波. 基于双残差注意力网络的ICMOS图像去噪算法. 光子学报. 2022(06): 374-383 .
    4. 张宇,崔皓东,张曦,高彩霞,钱永刚,马灵玲,邱实. 夜间遥感场地替代定标的微光光谱仪设计与试验分析. 半导体光电. 2022(06): 1155-1161 .

    Other cited types(5)

Catalog

    Article views (511) PDF downloads (117) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return